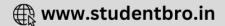
	G Ordinary Thinking	10.
	Objective Questions	
	Oxidation, Reduction	11.
1.	H_2O_2 reduces MnO_4^- ion to [KCET (Med.) 2000]	12.
1.		12.
2.	(c) Mn^{3+} (d) Mn^{-} When a sulphur atom becomes a sulphide ion	
4.	[AMU 1999]	13.
	(a) There is no change in the composition of atom	-
	(b) It gains two electrons	
	(c) The mass number changes	14.
	(d) None of these	
3.	The ultimate products of oxidation of most of hydrogen and carbon in food stuffs are [DCE 2001]	
	(a) H_2O alone (b) CO_2 alone	
	(c) H_2O and CO_2 (d) None of these	15.
4.	When <i>P</i> reacts with caustic soda, the products are PH_3 and NaH_2PO_2 . This reaction is an example of	
	example of [IIT 1980; Kurukshetra CEE 1993; CPMT 1997]	
	(a) Oxidation	
	(b) Reduction	
	(c) Oxidation and reduction (Redox)	
	(d) Neutralization	16.
5.	Which one of the following does not get oxidisedby bromine water[MP PET/PMT 1988]	10.
	(a) Fe^{+2} to Fe^{+3} (b) Cu^+ to Cu^{+2}	
	(c) Mn^{+2} to MnO_4^- (d) Sn^{+2} to Sn^{+4}	
6.	In the reaction $H_2S + NO_2 \rightarrow H_2O + NO + S$. H_2S is	
	(a) Oxidised (b) Reduced	
	(c) Precipitated (d) None of these	17.
7.	The conversion of PbO_2 to $Pb(NO_3)_2$ is	
	(a) Oxidation	
	(b) Reduction	
	(c) Neither oxidation nor reduction	
	(d) Both oxidation and reduction	18.
8.	In the course of a chemical reaction an oxidant	
	[MP PMT 1986]	
	(a) Loses electrons (b) Gains electrons	
	(b) Gains electrons(c) Both loses and gains electron	
	(d) Electron change takes place	19.
9.	$2Cul \rightarrow Cu + Cul_2$, the reaction is [RPMT 1997]	
0.	(a) Redox (b) Neutralisation	

Redox Reactions 551 (c) Oxidation (d) Reduction H_2S reacts with halogens, the halogens[JIPMER 2000] (a) Form sulphur halides(b) Are oxidised (c) Are reduced (d) None of these [MP PMT 1985] H_2O_2 reduces $K_4Fe(CN)_6$ (a) In neutral solution (b) In acidic solution (c) In non-polar solvent (d) In alkaline solution Max. number of moles of electrons taken up by one mole of NO_3^- when it is reduced to [DPMT 2002] (a) NH_3 (b) NH_2OH (c) *NO* (d) NO_2 In the reaction $3Mg + N_2 \rightarrow Mg_3N_2$ [MP PMT 1999] (a) Magnesium is reduced (b)Magnesium is oxidized (c) Nitrogen is oxidized (d) None of these When sodium metal is dissolved in liquid ammonia, blue colour solution is formed. The blue colour is due to [NCERT 1981] (a) Solvated Na^+ ions (b) Solvated electrons (c) Solvated NH_2^- ions (d) Solvated protons Following reaction describes the rusting of iron $4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$ Which one of the following statement is incorrect [NCERT 1981; MNR 1991; AIIMS 1998] (a) This is an example of a redox reaction (b) Metallic iron is reduced to Fe^{3+} (c) Fe^{3+} is an oxidising agent (d) Metallic iron is a reducing agent SnCl₂ gives a precipitate with a solution of $HgCl_2$. In this process $HgCl_2$ is [CPMT 1983] (a) Reduced (b) Oxidised (c) Converted into а complex compound containing both Sn and Hg(d) Converted into a chloro complex of H_g Oxidation involves [NCERT 1971, 81; CPMT 1980, 82, 83; MP PMT 1983] (a) Loss of electrons (b) Gain of electrons (c) Increase in the valency of negative part (d) Decrease in the valency of positive part Incorrect statement regarding rusting is [MP PET 2000] (a) Metallic iron is oxidised to Fe^{3+} ions (b) Metallic iron is reduced to Fe^{2-} ions (c) Oxygen gas is reduced to oxide ion (d) Yellowish - brown product is formed When copper turnings are added to silver nitrate solution, a blue coloured solution is formed after

(a) Displaces silver from the solution

CLICK HERE


🕀 www.studentbro.in

some time. It is because, copper[CPMT 1974, 79; DPMT 200

Get More Learning Materials Here :

	(b) Forms a blue coloure	ed complex with $AgNO_3$		(c) <i>P</i> is oxidised only	
	(c) Is oxidised to Cu^{2+}			(d) None of these	
	(d) Is reduced to Cu^{2+}		30.	In the following reaction	L
20.		tal in liquid ammonia is		$Cr_2O_7^- + 14H^+ + 6I^- \rightarrow 2Cr$	$^{3+} + 3H_2O + 3I_2$
	e. e	to the presence of the		Which element is reduce	d [CPMT 1976]
	following in the solution	RT 1977; KCET (Med.) 2000]		(a) <i>Cr</i>	(b) <i>H</i>
	(a) Sodium atoms	(b) Solvated electrons		(c) <i>O</i>	(d) <i>I</i>
	(c) Sodium hydride	(d) Sodium amide	31.	The conversion of sugar	$C_{12}H_{22}O_{11} \rightarrow CO_2 \text{ is }$
21.	When Sn^{2+} changes to Sn^{2+}	n ⁴⁺ in a reaction[CPMT 1981]		(a) Oxidation	
	(a) It loses two electron	s(b) It gains two		(b) Reduction	
elect	rons			(c) Neither oxidation no	r reduction
		(d) It gains two protons		(d) Both oxidation and re	
22.		ate $(S_2O_3^{2-})$ ion by iodine	32.	Which halide is not oxidi	ised by MnO_2
	gives	[NCERT 1976]			[MNR 1985; JIPMER 2000]
	(a) SO_3^{2-}	(b) SO_4^{2-}		(a) <i>F</i>	(b) <i>Cl</i>
				(c) <i>Br</i>	(d) <i>I</i>
	(c) $S_4 O_6^{2-}$	(d) $S_2 O_6^{2-}$	33.	e	
23.	$Zn^{2+}(aq) + 2e \rightarrow Zn(s)$. This	s is [CPMT 1985]		(a) It loses an electron	•
	(a) Oxidation	(b) Reduction		-	(d) It gains a proton
	(c) Redox reaction	(d) None of these	34.		reaction $MnO_4^- \rightarrow Mn^{2+}$
24.		e colour of flowers by er by oxidation [EAMCET 1980]		involves	
	(a) CO and Cl_2	(b) SO_2 and Cl_2		(a) Oridation has a cleater	[MP PMT 1989]
	(c) H_2S and Br_2	(d) NH_3 and SO_2		(a) Oxidation by 3 electr(b) Reduction by 3 electr	
				(c) Oxidation by 5 electr	
25.	Reduction involves (a) Loss of electrons	NCERT 1972]		(d) Reduction by 5 electr	
	(b) Gain of electrons		35.	-	dded to $CuSO_4$ solution,
	(c) Increase in the valer	ncy of positive part	55.		is due to [CPMT 1974, 79]
	(d) Decrease in the vale			(a) Oxidation of Cu^{+2}	
26.		zinc and iodine, in which hat is being oxidised[NCERT 1	975]	(c) Hydrolysis of $CuSO_4$	(d) Ionization of CuSO $_4$
	(a) Zinc ions	(b) Iodide ions	36.	In the reaction, $4Fe + 3O$	$D_2 \rightarrow 4Fe^{3+} + 6O^{2-}$ which of
	(c) Zinc atom	(d) Iodine		•	is incorrect[UPSEAT 2001, 02]
27.		owing reactions does not		(a) A Redox reaction	_
		or reduction [EAMCET 1982]		(b) Metallic iron is a red	
	(a) $VO_2^+ \rightarrow V_2O_3$			(c) Fe^{3+} is an oxidising a	•
	(c) $CrO_4^{2-} \rightarrow Cr_2O_7^{2-}$	(d) $Zn^{2+} \rightarrow Zn$		(d) Metallic iron is reduc	ced to Fe^{3+}
28.	In the following reaction	1,	37.	-	s redox reaction[CBSE PMT 1997]
	$3Br_2 + 6CO_3^{2-} + 3H_2O = 5B$	$r^{-} + BrO_{3}^{-} + 6HCO_{3}$		(a) H_2SO_4 with NaOH	
		[MP PMT 1994, 95]		(b) In atmosphere, O_3 fr	$com O_2$ by lightning
	(a) Bromine is oxidised	and carbonate is reduced		(c) Evaporation of H_2O	
	(b) Bromine is reduced a	and water is oxidised		(d)Nitrogen oxides form	nitrogen and oxygen by lightnin
	(c) Bromine is neither r			-	
	(d) Bromine is both redu			Oxidizing and Re	ducing agent
29.	In the following reaction $AP + 3KOH + 3HO \rightarrow 3KH$				
		$H_2PO_2 + PH_3$ [Pb. PMT 2002]	1.	Equation $H_2S + H_2O_2 \rightarrow S$	
	(a) <i>P</i> is oxidized as well(b) <i>P</i> is reduced only	as reduced			[UPSEAT 2001]
	(b) I is reduced only			(a) Acidic nature of H_2O_2	

Get More Learning Materials Here : 📕

				Rede	ox Reactions 553
	(b) Basic nature of H_2	0,			[CPMT 1996]
	(c) Oxidising nature of	-		(a) O ₂	(b) <i>KMnO</i> ₄
	(d) Reducing nature of			(c) <i>I</i> ₂	(d) None of these
2.	In the reaction	-2-2	12.	H_2O_2 is used as	[CPMT 1994]
	$C_2 O_4^{2-} + MnO_4^- + H^+ \rightarrow M$	$4n^{2+} + CO_2 + H_2O_2$		(a) An oxidant only	
	the reductant is	[EAMCET 1991]		(b) A reductant only	
	(a) $C_2 O_4^{2-}$	(b) MnO_4^-		(c) An acid only	
	(c) Mn^{2+}			(d) An oxidant, a reduc	ctant and an acid
2		(d) H^+	13.	In $C + H_2 O \rightarrow CO + H_2$, H	H_2O acts as [AFMC 1988]
3.	A reducing agent is a substance which can [CPMT 1971, 74, 76, 78, 80; NCERT 1976]			(a) Oxidising agent	(b) Reducing agent
	(a) Accept electron	(b) Donate electrons		(c) (a) and (b) both	(d) None of these
	(c) Accept protons	(d) Donate protons	14.	Strongest reducing age	
4.		ing is the most powerful			96; MP PET 1990; AMU 1999]
	oxidizing agent	[MNR 1000, CRMT 2002]		(a) F^{-}	(b) <i>Cl</i> ⁻
	(a) <i>F</i> ₂	[MNR 1990; CPMT 2003] (b) <i>Cl</i> ₂		(c) Br^{-}	(d) I^-
	(c) Br_2	(d) I_2	15.	-	lioxide in water reacts with phur. Here sulphur dioxide
_	_	2		acts as	r
5.		of chlorine the strongest te aqueous solution is [MP PET	2000]		[NCERT 1980]
	(a) $HClO_4$	(b) HClO ₃	-	(a) As oxidising agent	
	(c) $HClO_2$	(d) HOCl	_	(c) An acid	(d) A catalyst
6.	-	atement about H_2O_2 [AIIMS 19	16. 96]	Which of these substagent	tances is a good reducing
	(a) It acts as reducing agent only			ugent	[NCERT 1979; CPMT 1988]
	-	ising and reducing agent		(a) NaOCl	(b) <i>HI</i>
	(c) It is neither an oxi			(c) $FeCl_3$	(d) <i>KBr</i>
	(d) It acts as oxidising	agent only	17.	The strongest reducing	g agent is [MNR 1982]
7.		agnesium are fixed to the		(a) HNO_2	(b) H_2S
	bottom of a ship to (a) Keep away the sha	[AIEEE 2003]		(c) $H_2 SO_3$	(d) $SnCl_2$
	(b) Make the ship light		18.	Which one is an oxidis	ing agent [DPMT 1996]
	(c) Prevent action of v			(a) FeSO $_4$	
	(d) Prevent puncturing			(b) <i>HNO</i> ₃	
8.		g behaves as both oxidising		(c) $FeSO_4.(NH_4)_2SO_4.6$	H_2O
	and reducing agents	[AFMC 1995]		(d) $H_2 SO_4$	
	(a) $H_2 SO_4$	(b) SO_2	19.	In which of the folle	owing reactions H_2O_2 is a
	(c) H_2S	(d) HNO_3		reducing agent	
9.	The reaction $H_2S + H_2C$			_	1981; NCERT 1981; BHU 1999]
		[JIPMER 2001]		(a) $2FeCl_2 + 2HCl + H_2C$	$D_2 \rightarrow 2FeCl_3 + 2H_2O$
	(a) Oxidizing action of			(b) $Cl_2 + H_2O_2 \rightarrow 2HCl$	$+O_2$
	(b) Reducing action of			(c) $2HI + H_2O_2 \rightarrow 2H_2O$	$+I_2$
	(c) Alkaline nature of			(d) $H_2SO_3 + H_2O_2 \rightarrow H_2$	$_2SO_4 + H_2O$
	(d) Acidic nature of H_1	$_{2}O_{2}$	20.	When NaCl is dissolve	ed in water the sodium ion
10.	Which of the following	is not a reducing agent		becomes	
	(a) N = N(a)	[EAMCET 1987]		(a) Oxidised	[NCERT 1976] (b) Reduced
	(a) $NaNO_2$	(b) $NaNO_3$		(c) Hydrolysed	(d) Hydrated
	(c) <i>HI</i>	(d) $SnCl_2$	21.	Strongest reducing age	•
11.		g cannot work as oxidising		(a) <i>K</i>	(b) <i>Mg</i>
	agent				

	(c) Al	(d) <i>Br</i>	31.	Which of the follow	wing substances acts as an
	(e) <i>Na</i>				a reducing agent[UPSEAT 2004; DCE
22.		rving as a reducing agent in		(a) Na_2O	(b) $SnCl_2$
	the following reaction $14 H^{+}$ + $G = Q^{2-} + 2 H^{-}$	3^{+} , 74, 0 , 2 N^{2+}		(c) Na_2O_2	(d) NaNO $_2$
	$14 H^+ + Cr_2 O_7^{2-} + 3Ni \rightarrow 2$	-	32.	In the reaction	
	(a) H_2O	994; AFMC 2000; DPMT 2001] (b) <i>Ni</i>		$P + NaOH \rightarrow PH_3 + NaOH$	<i>aH</i> ₂ <i>PO</i> ₂ [MP PET 2004]
	(c) H^+	(d) $Cr_2 O_7^{2-}$		(a) <i>P</i> is oxidised only	y
		In a cid possesses oxidising,		(b) <i>P</i> is reduced only	
23.		forming properties[MNR 1985]		(c) <i>P</i> is oxidized as w	vell as reduced
	(a) HNO_3	(b) H_2SO_4		(d) <i>Na</i> is reduced	
	(c) <i>HCl</i>	(d) HNO_2		Oxidation number	r and Oxidation state
24.	Which one is oxidising	substance [CPMT 1997]			
	(a) $C_2 H_2 O_2$	(b) <i>CO</i>	1.		er of C in CO_2 is [MP PET 2001]
	(c) H_2S	(d) <i>CO</i> ₂		(a) - 2 (c) - 4	(b) + 2 (d) + 4
25.		an work both as oxidising	2.	The oxidation numbe	
	and reducing agent is	[CPMT 1986; MP PET 2000]		(a) + 2 and + 3	(b) + 3 and + 5
	(a) $KMnO_4$	(b) $H_2 O_2$			(d) None of these
_	(c) BaO_2	(d) $K_2 C r_2 O_7$	3.	The oxidation numbe	er of <i>Ba</i> in barium peroxide is [Pb. PMT 2002]
26.	Which one is oxidising agent in the reaction below			(a) + 6	(b) + 2
	$2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-}$	+ <i>H</i> ₂ <i>O</i> [CPMT 1997]		(c) 1	(d) + 4
	,	2	4.	-	reductant and oxidant, while
	(a) <i>H</i> ⁺	(b) $Cr_2O_4^-$		(a) Solubility ability	xidant. It is due to their [AIIMS 20
	(c) Cr^{++}	(d) None of these		(b) Maximum oxidati	
27.	Which is the best description of the behaviour of bromine in the reaction given below			(c) Minimum oxidati	ion number
	$H_2O + Br_2 \rightarrow HOBr + HE$	•	-		er of valence electrons
	(a) Oxidised only		5۰	Chlorine is in +1 oxid [MP PMT 198	
	-				81; NCERT 1974; CPMT 1971, 78]
	(b) Reduced only			(a) <i>HCl</i>	(b) $HClO_4$
	(c) Proton acceptor on	•		(a) <i>HCl</i> (c) <i>ICl</i>	
	(c) Proton acceptor on(d) Both oxidised and	reduced	6.	(c) <i>ICl</i>	(b) <i>HClO</i> ₄
28.	(c) Proton acceptor on	reduced agent in chlorine water	6.	(c) <i>ICl</i> The valency of <i>Cr</i> in t	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000]
28.	(c) Proton acceptor on(d) Both oxidised andWhat is the oxidising a	reduced agent in chlorine water [JEE Orissa 2004]	6.	(c) <i>ICl</i>The valency of <i>Cr</i> in t(a) 1	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3
28.	(c) Proton acceptor on(d) Both oxidised and aWhat is the oxidising a(a) <i>HCl</i>	reduced agent in chlorine water [JEE Orissa 2004] (b) <i>HClO</i> 2		 (c) <i>ICl</i> The valency of <i>Cr</i> in t (a) 1 (c) 5 	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6
	 (c) Proton acceptor on (d) Both oxidised and a What is the oxidising a (a) <i>HCl</i> (c) <i>HOCl</i> 	reduced agent in chlorine water [JEE Orissa 2004]	6. 7.	 (c) <i>ICl</i> The valency of <i>Cr</i> in the conversion <i>Br</i> 	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6 $r_2 \rightarrow BrO_3^-$, the oxidation state
	 (c) Proton acceptor on (d) Both oxidised and a What is the oxidising a (a) <i>HCl</i> (c) <i>HOCl</i> In the reaction 	reduced agent in chlorine water [JEE Orissa 2004] (b) <i>HClO</i> ₂ (d) None of these		 (c) <i>ICl</i> The valency of <i>Cr</i> in the valency of <i>Cr</i> in the conversion <i>Br</i> of bromine changes for the conversion for the conver	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6 $r_2 \rightarrow BrO_3^-$, the oxidation state
28. 29.	 (c) Proton acceptor on (d) Both oxidised and a What is the oxidising a (a) <i>HCl</i> (c) <i>HOCl</i> In the reaction 	reduced agent in chlorine water [JEE Orissa 2004] (b) $HClO_2$ (d) None of these $H_2O + O_2$, the H_2O_2 acts as		 (c) <i>ICl</i> The valency of <i>Cr</i> in the valency of <i>Cr</i> in the conversion <i>Br</i> of bromine changes f (a) - 1 to - 1 	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6 $r_2 \rightarrow BrO_3^-$, the oxidation state from CT 1990; AMU 1999; RPMT 2002] (b) 0 to - 1
	(c) Proton acceptor on (d) Both oxidised and a What is the oxidising a (a) <i>HCl</i> (c) <i>HOCl</i> In the reaction $Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O_2$	reduced agent in chlorine water [JEE Orissa 2004] (b) $HClO_2$ (d) None of these $H_2O + O_2$, the H_2O_2 acts as [BHU 2004]	7.	(c) ICl The valency of Cr in the valency of Cr in the conversion Br of bromine changes from [EAMCE] (a) - 1 to - 1 (c) 0 to + 5	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6 $r_2 \rightarrow BrO_3^-$, the oxidation state from CT 1990; AMU 1999; RPMT 2002] (b) 0 to - 1 (d) 0 to - 5
	(c) Proton acceptor on (d) Both oxidised and a What is the oxidising a (a) <i>HCl</i> (c) <i>HOCl</i> In the reaction $Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O_2$ (a) Reducing agent	reduced agent in chlorine water [JEE Orissa 2004] (b) HCO_2 (d) None of these $H_2O + O_2$, the H_2O_2 acts as [BHU 2004] (b) Oxidising agent		 (c) ICl The valency of Cr in the valency of Cr in the conversion Br of bromine changes f (a) - 1 to - 1 (c) 0 to + 5 In the chemical react 	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6 $r_2 \rightarrow BrO_3^-$, the oxidation state from CT 1990; AMU 1999; RPMT 2002] (b) 0 to - 1 (d) 0 to - 5 tion $Cl_2 + H_2S \rightarrow 2HCl + S$, the
	(c) Proton acceptor on (d) Both oxidised and a What is the oxidising a (a) <i>HCl</i> (c) <i>HOCl</i> In the reaction $Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O_2$	reduced agent in chlorine water [JEE Orissa 2004] (b) $HClO_2$ (d) None of these $H_2O + O_2$, the H_2O_2 acts as [BHU 2004]	7.	 (c) ICl The valency of Cr in the valency of Cr in the conversion Br of bromine changes f (a) - 1 to - 1 (c) 0 to + 5 In the chemical react 	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6 $r_2 \rightarrow BrO_3^-$, the oxidation state from CT 1990; AMU 1999; RPMT 2002] (b) 0 to - 1 (d) 0 to - 5 tion $Cl_2 + H_2S \rightarrow 2HCl + S$, the
29.	(c) Proton acceptor on (d) Both oxidised and f What is the oxidising a (a) <i>HCl</i> (c) <i>HOCl</i> In the reaction $Ag_2O + H_2O_2 \rightarrow 2Ag + H$ (a) Reducing agent (c) Bleaching agent In the reaction	reduced agent in chlorine water [JEE Orissa 2004] (b) HCO_2 (d) None of these $H_2O + O_2$, the H_2O_2 acts as [BHU 2004] (b) Oxidising agent	7.	(c) ICl The valency of Cr in the valency of Cr in the conversion Br of bromine changes f EAMCE (a) - 1 to - 1 (c) 0 to + 5 In the chemical reaction oxidation number of (a) 0 to 2 (c) - 2 to 0	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6 $r_2 \rightarrow BrO_3^-$, the oxidation state from CT 1990; AMU 1999; RPMT 2002] (b) 0 to - 1 (d) 0 to - 5 tion $Cl_2 + H_2S \rightarrow 2HCl + S$, the sulphur changes from [MP PMT 199 (b) 2 to 0 (d) - 2 to - 1
29.	(c) Proton acceptor on (d) Both oxidised and f What is the oxidising a (a) <i>HCl</i> (c) <i>HOCl</i> In the reaction $Ag_2O + H_2O_2 \rightarrow 2Ag + H$ (a) Reducing agent (c) Bleaching agent In the reaction	reduced agent in chlorine water [JEE Orissa 2004] (b) $HClO_2$ (d) None of these $H_2O + O_2$, the H_2O_2 acts as [BHU 2004] (b) Oxidising agent (d) None of the above	7.	(c) ICl The valency of Cr in the valency of Cr in the conversion Br of bromine changes f EAMCE (a) - 1 to - 1 (c) 0 to + 5 In the chemical reaction oxidation number of (a) 0 to 2 (c) - 2 to 0	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6 $r_2 \rightarrow BrO_3^-$, the oxidation state from T 1990; AMU 1999; RPMT 2002] (b) 0 to - 1 (d) 0 to - 5 tion $Cl_2 + H_2S \rightarrow 2HCl + S$, the sulphur changes from [MP PMT 199 (b) 2 to 0
29.	(c) Proton acceptor on (d) Both oxidised and f What is the oxidising a (a) <i>HCl</i> (c) <i>HOCl</i> In the reaction $Ag_2O + H_2O_2 \rightarrow 2Ag + H$ (a) Reducing agent (c) Bleaching agent In the reaction	reduced agent in chlorine water [JEE Orissa 2004] (b) $HClO_2$ (d) None of these $H_2O + O_2$, the H_2O_2 acts as [BHU 2004] (b) Oxidising agent (d) None of the above H_2O oxidising agent is	7. 8.	(c) ICl The valency of Cr in the valency of Cr in the conversion Br of bromine changes f EAMCE (a) - 1 to - 1 (c) 0 to + 5 In the chemical reaction oxidation number of (a) 0 to 2 (c) - 2 to 0	(b) $HClO_4$ (d) Cl_2O the complex $[Cr(H_2O)_4 Cl_2]^+$ [MP PMT 2000] (b) 3 (d) 6 $r_2 \rightarrow BrO_3^-$, the oxidation state from 2T 1990; AMU 1999; RPMT 2002] (b) 0 to - 1 (d) 0 to - 5 tion $Cl_2 + H_2S \rightarrow 2HCl + S$, the sulphur changes from [MP PMT 199 (b) 2 to 0 (d) - 2 to - 1

				Red	ox Reactions 555	
10.	When $K_2 Cr_2 O_7$ i	s converted to K_2CrO_4 , the change		(c) + 2	(d) - 2	
	,	state of chromium is [NCERT 1981]	23.	Maximum oxidation s	tate of <i>Cr</i> is [RPM	T 2002]
	(a) 0	(b) 6		(a) 3	(b) 4	
	(c) 4	(d) 3		(c) 6	(d) 7	
11.		umber of chlorine in <i>HOCl</i>	24.	In which of the foll	owing compound tra	ansition
	(a) – 1	(b)0		metal has zero oxidati	ion state [CBSE PMT 19	999; BHU 20
	(c) + 1	(d) + 2		(a) <i>CrO</i> ₅	(b) $NH_2.NH_2$	
12.	Oxidation numb	er of S in S^{2-} is [CPMT 1979]		(c) $NOClO_4$	(d) $[Fe(CO)_5]$	
	(a) – 2	(b) O	25.	Carbon is in the lowes	st oxidation state in	
	(c) - 6	(d) + 2	0		[NCERT 1979; MH CE	ET 1999]
13.	Oxidation numb	per of N in $(NH_4)_2SO_4$ is [CPMT 1996]	(a) CH_4	(b) <i>CCl</i> ₄	
	(a) - 1 / 3	(b) - 1		(c) <i>CF</i> ₄	(d) CO_2	
	(c) + 1	(d) - 3	26.		-	
14.		ound, oxidation state of nitrogen is	20.	Oxidation number of o		
-1.	1				_	IT 1982]
		[MP PMT 1989]		(a) + 4 (c) + 2	(b) + 3 (d) - 2	
	(a) <i>NO</i>	(b) N_2O				.
	(c) NH_2OH	(d) $N_2 H_4$	27.	The oxidation number	of Pt in $[Pt(C_2H_4)Cl_3]$] ⁻ is
	_	2 .			[MN	IR 1993]
15.	Oxidation numb	per of nickel in $Ni(CO)_4$		(a) + 1	(b) + 2	
		[AIIMS 1984; MNR 1985; CPMT 1997;		(c) + 3	(d) + 4	
	<i>.</i> .	MP PET/PMT 1998; AMU 2000; 01]	28.	The oxidation number	of carbon in CH_2Cl_2	is
	(a) 0	(b) + 4		[CPMT 19	976; Pb. PET 1999; AFM	C 2004]
_	(c) - 4	(d) + 2		(a) 0	(b) + 2	
16.	The oxidation n	umber of sulphur in H_2SO_4 is		(c) -2	(d) + 4	
		[CPMT 1979Pb. CET 2002]	29.	The oxidation states o	f phosphorus vary fro	om
	(a) – 2	(b) + 2				IT 1976]
	(c) + 4	(d) + 6		(a) – 3 to +5	(b) – 1 to +1	
17.	Oxidation state	of chlorine in perchloric acid is		(c) - 3 to +3	(d) – 5 to +1	
		[EAMCET 1989]	30.	The process in which o	oxidation number incr	eases is
	(a) – 1	(b) o		known as		
	(c) – 7	(d) + 7				IT 1976]
18.	Oxidation numb	per of N in HNO_3 is		(a) Oxidation	(b) Reduction	
		[BHU 1997]		(c) Auto-oxidation		
	(a) - 3.5	(b) + 3.5	31.	The oxidation number	of S in $H_2S_2O_8$ is [MP	PET 2002]
	(c) - 3, +5	(d) + 5		(a) + 2	(b) + 4	
19.	The oxidation n	umber of <i>Mn</i> in MnO_4^{-1} is		(c) + 6	(d) + 7	
-	(a) + 7	(b) - 5	32.	The oxidation state of	nitrogen in N_3H is	
	(a) + 7 (c) + 6	(d) + 5			[NCERT 1	977, 81]
20		electrons in a reaction. What will		(a) $+\frac{1}{3}$	(b) + 3	
20.		number of tin after the reaction		3		
	(a) + 2	(b) Zero		(c) -1	(d) $-\frac{1}{3}$	
	(a) $+ 2$ (c) $+ 4$	(d) - 2			5	
21		tate of Mn in $K_2 MnO_4$	33.	Which of the followin	-	
21.	The Unitedituti St			(a) Hydrogen has oxid	lation number -1 and	1 +1
		[CPMT 1982, 83, 84; DPMT 1982; NCERT 1973; AMU 2000]	halo	(b) Hydrogen has s ogens	same electronegativ	rity as
	(a) + 2	(b) + 7		(c) Hydrogen will not	be liberated at anode	e
	(c) – 2	(d) + 6		(d) Hydrogen has sa		
22.	Oxidation numb	er of oxygen in O_2 molecule is	alka	li metals	-	
		[CPMT 1984]	34.	The oxidation state of	Cr in $[Cr(NH_3)_4 Cl_2]^+$	is
	(a) + 1	(b) o	-			E 2005]
					-	

Get More Learning Materials Here : 💻

	(a) +3	(b) +2		(c) 0	(d) + 4	
	(c) +1	(d) o	48.		xidation number of atoms in	
35.	Sulphur has highes	t oxidation state in		free metals is	[NCERT 1975]	
		[EAMCET 1991]		(a) Minus one	(b) Any number	
	(a) SO_2	(b) H_2SO_4		(c) One	(d) Zero	
	(c) $Na_2S_2O_3$	(d) $Na_2S_4O_6$	49.	In which one of the transfer of five electr	following changes there are ons [NCERT 1982]	
36.		ber of <i>Fe</i> and <i>S</i> in iron pyrites		(a) $MnO_4^- \rightarrow Mn^{2+}$	(b) $CrO_4^2 \rightarrow Cr^{3+}$	
	are	[RPMT 1997]		(c) $MnQ_{1}^{2-} \rightarrow MnQ_{2}$	(d) $Cr_2 O_7^{2-} \to 2Cr^{3+}$	
	(a) 4, - 2	(b) 2, - 1	50		<i>C</i> in $C_6 H_{12} O_6$ is [KCET 1992]	
	(c) 3, - 1.5	(d) 3, -1	50.			
				(a) + 6	(b) - 6	
37.	The oxidation num	ber of nitrogen in NO_3^- is		(c) 0	(d) + 4	
		[CPMT 1982]	51.	lowest oxidation state	lowing compounds iron has	
	(a) – 1	(b) + 2				
	(c) + 3	(d) + 5		(a) $FeSO_4.(NH_4)_2SO_4.$	$0H_2O$	
38.		elemental carbon is [MNR 1983]		(b) $K_4 Fe(CN)_6$		
	(a) 0	(b) 1		(c) $Fe(CO)_5$		
	(c) 2	(d) 3		(d) Fe_2O		
39.		oxidation numbers of all the		(e) $K_2 FeO_4$		
	carbons in C_6H_5CH	<i>O</i> is [EAMCET 1986]	52.		r of hydrogen in MH_2 is	
	(a) + 2	(b) o	52.	The oxidation number		
	(c) + 4	(d) - 4		(a) + 1	[CPMT 1976]	
40.		e following has the highest		(a) + 1	(b) - 1	
	oxidation number of	of iodine [CPMT 1982]		(c) + 2	(d) - 2	
	(a) <i>KI</i> ₃	(b) <i>KI</i>	53.		iodine varies from[CPMT 1982]	
	(c) <i>IF</i> ₅	(d) KIO_4		(a) – 1 to +1	(b) – 1 to +7	
41		han of Min M U ⁺ [Dh DMT acci]		(c) +3 to +5	(d) – 1 to +5	
41.	The oxidation number of N in $N_2H_5^+$ [Pb. PMT 2001]			=	l through acidic solution of	
	(a) - 3 (c) - 1	(b) (- 2) (d) + 2		potassium dichromate, then chromium sulphate formed. Change in valency of chromium is [CPMT		
12.		e following compounds the		(a) +4 to +2	(b) +5 to +3	
I	oxidation number of carbon is maximum			(c) +6 to +3	(d) +7 to +2	
	(a) <i>HCHO</i>		55.	The oxidation states	of the most electronegative	
		-			oducts of the reaction of	
	(c) CH_3OH (d) $C_{12}H_{22}O_{11}$			BaO_2 with dilute H_2S	O_4 are	
1 3.		of chlorine in $KClO_4$ is[CPMT 198	5]	[IIT 19	91; CBSE PMT 1992; BHU 2000]	
	(a) – 1	(b) + 1		(a) 0 and – 1	(b) – 1 and – 2	
	(c) + 7	(d) – 7		(c) – 2 and 0	(d) – 2 and + 1	
14 .	The oxidation state	of I in $H_4 IO_6^-$ is [CBSE PMT 1994]	56.	The highest oxidation	state of Mn is shown by	
	(a) + 7	(b) + 5			[MNR 1983; RPMT 1999]	
	(c) + 1	(d) – 1		(a) $K_2 MnO_4$	(b) $KMnO_4$	
1 5.	An element which	never has a positive oxidation		(c) MnO_2	(d) Mn_2O_2	
	number in any of it	s compounds [AIIMS 1981]		-		
	(a) Boron	(b) Oxygen		(e) <i>MnO</i>	r of carbon in CU O is	
	(c) Chlorine	(d) Fluorine	57.		r of carbon in CH_2O is	
16 .	In an oxidation pro (a) Decreases	cess, oxidation number[CPMT 1976	6]	[IIT 1982; EAMCET	1985; MNR 1990; UPSEAT 2001 CPMT 1997, 2004]	
	(b) Increases			(a) – 2	(b) + 2	
	(c) Does not change	e		(c) 0	(d) + 4	
	(d) First increases		58.	Oxidation state of oxy	ygen in hydrogen peroxide is	
1 7.		nto N_2O , the oxidation number		[DPMT 19	984; 91; CPMT 1988; MNR 1994;	
-	is changed by	[BHU 1997; AFMC 2001]		UPSEAT 2001	; RPMT 2002; JEE Orissa 2004]	
	(a) + 2	(b) - 1		(a) – 1	(b) + 1	
		(-) =		(c) 0	(d) - 2	

Regional www.studentbro.in

Get More Learning Materials Here : 💻

					Redox Reactions 557
9.	The oxidation num	ber of Cr in $K_2Cr_2O_7$ is			HU 1983; NCERT 1974; CPMT 1977]
	[CPM	T 1981, 85, 90, 93, 99; KCET 1992;		(a) 4	(b) 2
		98; AFMC 1991, 99; EAMCET 1986;		(c) 6	(d) 8
	MP PMT 19	996, 99, 2002; MP PET/PMT 1998;	71.	Sulphur has lowes	t oxidation number in
		Bihar CEE 1995; RPET 2000]			[EAMCET 1993]
	(a) +6	(b) – 7		(a) $H_2 SO_3$	(b) SO_2
	(c) +2	(d) - 2		(c) H_2SO_4	(d) H_2S
•	metal is in oxidatio	bllowing compounds transition on state zero [NCERT 1982]	72.		ber and covalency of sulphur in ule (S ₈) are respectively[NCERT 19
	(a) $[Co(NH_3)_6]Cl_2$	(b) $[Fe(H_2O)_6SO_4]$		(a) 0 and 2	(b) 6 and 8
	(c) $[Ni(CO)_4]$	(d) $[Fe(H_2O)_3](OH)_2$		(c) 0 and 8	(d) 6 and 2
•	Oxidation number	of osmium (<i>Os</i>) in <i>OsO</i> ₄ is [AIIMS 1999]	73.	In ferrous ammon of <i>Fe</i> is	ium sulphate oxidation number
	(a) + 4	(b) + 6			[CPMT 1988]
	(c) + 7	(d) + 8		(a) + 3	(b) + 2
	· · ·	er of an element which shows		(c) + 1	(d) - 2
••	the oxidation state		74.	The oxidation num	ber of nitrogen in NH_2OH is
	(a) 13	(b) 32			[NCERT 1981]
	(c) 33	(d) 17		(a) + 1	(b) – 1
•		nber of iron in the compound		(c) – 3	(d) - 2
	$K_4[Fe(CN)_6]$ is	1	75.		number of phosphorus in
	[NCE	RT 1976; MNR 1986; AIIMS 2000]		$Ba(H_2PO_2)_2$ is	
	(a) + 6	(b) + 4			Kurukshetra CEE 1998; DCE 2004]
	(c) + 3	(d) + 2		(a) - 1	(b) + 1
•		mplex compound is formulated 4. The oxidation state of iron is	76.	(c) + 2 A compound is in will be	(d) + 3 its low oxidation state. Then its
	[EAM	CET 1987; IIT 1987; MP PMT 1994;		will be	[DCE 2001]
		AIIMS 1997; DCE 2000]		(a) Highly acidic	
	(a) 1	(b) 2		(b) Highly basic	
	(c) 3	(d) o		(c) Highest oxidis	ing property
•	Oxidation state of o	bxygen in F_2O is		(d) Half acidic, ha	
		982; UPSEAT 2001; MH CET 2002]			number and the electronic
	(a) + 1	(b) + 2	77.		all the electronic alphur in H_2SO_4 is [KCET 2002]
	(c) -1	(d) -2		-	- 2 .
•	Phosphorus has the	e oxidation state of +3 in [NCERT 1982; RPMT 1999]		(a) + 4; $1s^2 2s^2 2p^6 3$ (b) + 2; $1s^2 2s^2 2p^6 3$	
	(a) Orthophosphor	-			•
		c acid (d) Pyrophosphoric acid		(c) + 3; $1s^2 2s^2 2p^6 3$	3s ² 3p ²
•	Oxidation number	·		(d) + 6; $1s^2 2s^2 2p^6$	
	(a) $+$ a	[CPMT 1989; MP PMT 1995]	78.	The oxidation num	ber of Mn in $KMnO_4$ is
	(a) + 3 (c) + $ 5$	(b) + 2 (d) = 2		[CPMT 1982,	83; EAMCET 1992, 93; RPET 1999]
	(c) $+ 5$ The oxidation state	(d) – 3 of nitrogen is highest in		(a) + 7	(b) - 7
•	The Unitation State	[MP PMT 2001; BHU 2002]		(c) + 1	(d) - 1
	(a) $N_{3}H$	(b) NH_2OH	79.		of As atoms in H_3AsO_4 is
	(c) N_2H_4	(d) NH_3			[DPMT 2001]
		-		(a) – 3	(b) + 4
).	Oxidation number			(c) $+ 6$	(d) + 5
		[CPMT 1987; MH CET 1999]	80.		the oxidation state of <i>Xe</i> is
	(a) + 1	(b) + 3			[MP PET 2003]
	(c) + 5	(d) - 4		(a) + 4	(b) + 6
•		oxidation state of an element is of electrons present in its		(a) + 4 (c) + 1	
	-2 The number			(C) + 1	(d) + 3

	<i>.</i>	[MP PET 2000]		(a) $\frac{2}{3}$	(b) $\frac{3}{2}$
	(a) - 3	(b) - 2			
	(c) - 1	(d) o		(c) $\frac{3}{5}$	(d) $\frac{5}{2}$
32.	The oxidation state of	f Cr in $Cr_2O_7^{2-}$ is		5	2
		[BHU 2000; CPMT 2000]	94.	•	cts with <i>KI</i> , the oxidation
	(a) 4	(b) – 6		number of <i>Cu</i> change	
	(c) 6	(d) - 2		(a) 0	(b) - 1
3.	Oxidation state of 'S'	in H_2SO_3 [RPET 2003]	~ -	(c) 1 The evidetion numb	(d) 2
	(a) + 3	(b) + 6	95.		er of N in NH_4Cl is
	(c) + 4	(d) + 2		(a) + 5	(b) + 3
4.		f two <i>Cl</i> atoms in bleaching	06	(c) - 5	(d) - 3
	powder, $CaOCl_2$ are		96.	III WIICH Feaction th	ere is a change in valency [NCERT 1971; CPMT 1971]
	(a) – 1, – 1	(b) + 1, - 1		(a) $2NO_2 \rightarrow N_2O_4$	
	(c) + 1, + 1	(d) 0, - 1			
5٠		in which chlorine is assigned		(b) $2NO_2 + H_2O \rightarrow HN$	
	the oxidation number			(c) $NH_4OH \rightarrow NH_4^+ +$	OH^-
	(a) $HClO_4$	(b) $HClO_2$		(d) $CaCO_3 \rightarrow CaO + C$	O_2
	(c) $HClO_3$	(d) <i>HCl</i>	9 7.	Oxidation state of F	e in Fe_3O_4 is
6.		ced with oxalic acid in acidic			[CBSE PMT 1999; AIIMS 2002]
		on number of <i>Mn</i> changes		$(2)^{3}$	$(\mathbf{b})^{4}$
	from			(a) $\frac{3}{2}$	(b) $\frac{4}{5}$
		MP PET 2000; CBSE PMT 2000; 000, 02; BHU 2003; AMU 2002]		(c) $\frac{5}{4}$	(d) $\frac{8}{3}$
	(a) 7 to 4	(b) 6 to 4		(c) $\frac{-}{4}$	$\left(u\right) \frac{1}{3}$
	(c) 7 to 2	(d) 4 to 2	98.	Nitrogen show diff	erent oxidation states in the
7.	Oxygen has oxidation			range	
,		973; DPMT 1983; MP PET 2000]			[Kerala (Med.) 2003]
	(a) H_2O_2	(b) <i>CO</i> ₂		(a) 0 to +5	(b) -3 to $+5$
	(c) H_2O	(d) OF_2		(c) -5 to $+3$	(d) - 3 to + 3
8.	-	ng most stable +2 oxidation	99.		of Mn in K_2MnO_4 and $MnSO_4$
	state among the follo	•		are respectively	[CPMT 1997]
	(a) Ag	(b) Fe		(a) + 7, + 2 (c) + 5, + 2	(b) + 6, + 2 (d) + 2 + 6
		(d) <i>Pb</i>	100		(d) + 2, + 6 ent which can have highest
~	(c) Sn		100.		[AIIMS 1996]
9.		sulphur in $S_2 O_3^{2-}$ is[CPMT 1979]		(a) <i>N</i>	(b) <i>O</i>
	(a) - 2	(b) + 2		(c) <i>Cl</i>	(d) <i>C</i>
~	(c) + 6 Carbon has zero oxida	(d) 0	101.		idation number of Co in
э.	Cal Doll llas zelo oxiu	[Kurukshetra CEE 2002]		$[Co(NH_3)_4 ClNO_2]$	
	(a) <i>CO</i>	(b) CH_4			[BHU 1999]
	(c) CH_2Cl_2	(d) $CH_{3}Cl$		(a) + 2	(b) + 3
1		oxygen atom in potassium		(c) + 4	(d) + 5
1.	superoxide is	oxygen atom in potassium	102.		er of nickel in $K_4[Ni(CN)_4]$ is
	Superovide 15	[MNR 1988; NCERT 1980]			[JIPMER 1999]
	(a) 0	(b) – 1		(a) – 2	(b) - 1
	(c) $-\frac{1}{2}$	(d) - 2		(c) + 2	(d) 0
2.	Oxidation number of	S in S_2Cl_2 is	103.		er of fluorine in F_2O is
-	(a) + 1	(b) - 1	1000		' 1982; BHU 1982; EAMCET 1986]
	(a) + 1 (c) + 6	(d) O		(a) - 1	(b) + 1
3.		ion number of sulphur in		(c) $+ 2$	(d) - 2
-	$Na_2S_4O_6$	- 1	104.		f Fe in $K_3[Fe(CN)_6]$ is

Get More Learning Materials Here : 💻

Regional www.studentbro.in

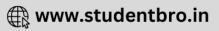
$KMnO_4 \text{ acts as an oxidising agent and}$ $RMnO_4 \text{ acts as an oxidising agent and}$ $RMnO_4 \text{ promes } [MnO_4]^{-2}, MnO_2, Mn_2O_3, Mn^{+2} \text{ then}}$ $Rater of electrons transferred in each case vely is [AIEEE 2002]$ $1, 5 (b) 1, 5, 3, 7$ $4, 5 (d) 3, 5, 7, 1$ $aper is used to test for the presence of [NCERT 1979]$ $Re (b) Oxidising agent (d) Reducing agent (d) Reducing agent (d) Reducing agent (d) Reducing agent (d) 1 (b) 1/6 (d) 1 (b) 1/6 (d) 1 (b) 1/6 (d) 1 (c) 1 ($
ber of electrons transferred in each case [AIEEE 2002] 1, 5 (b) 1, 5, 3, 7 4, 5 (d) 3, 5, 7, 1 aper is used to test for the presence of [NCERT 1979] ne (b) Oxidising agent de ion (d) Reducing agent approximation (d) Reducing agent (b) 1/6 (c) 1 Sn^{2+} [MP PMT 2003] (b) 1/6 (c) 1 $-5H_2O_2 + 6H^+ \rightarrow 2Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} O_2 (c) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (c) Sn redox reaction
ber of electrons transferred in each case [AIEEE 2002] 1, 5 (b) 1, 5, 3, 7 4, 5 (d) 3, 5, 7, 1 aper is used to test for the presence of [NCERT 1979] ne (b) Oxidising agent de ion (d) Reducing agent approximation (d) Reducing agent (b) 1/6 (c) 1 Sn^{2+} [MP PMT 2003] (b) 1/6 (c) 1 $-5H_2O_2 + 6H^+ \rightarrow 2Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} O_2 (c) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (c) Sn redox reaction
[AIEEE 2002]1, 5(b) 1, 5, 3, 74, 5(d) 3, 5, 7, 1aper is used to test for the presence of[NCERT 1979]ne(b) Oxidising agentde ion(d) Reducing agentde ion(d) Reducing agentmy moles of $K_2Cr_2O_7$ can be reduced by 1 Sn^{2+} [MP PMT 2003](b) $1/6$ (d) 1 $-5H_2O_2 + 6H^+ \rightarrow 2Z + 5O_2 + 8H_2O$. In thisZ is[RPMT 2002](b) Mn^{+4} O_2 (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ (aq)(b) $Sn^{4+}(aq)$ (aq)(d) Sn redox reaction
1, 5 (b) 1, 5, 3, 7 4, 5 (d) 3, 5, 7, 1 aper is used to test for the presence of [NCERT 1979] ne (b) Oxidising agent de ion (d) Reducing agent any moles of $K_2Cr_2O_7$ can be reduced by 1 Sn^{2+} [MP PMT 2003] (b) 1/6 (d) 1 $-5H_2O_2 + 6H^+ \rightarrow 2Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} O_2 (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (c) Sn redox reaction
4, 5 (d) 3, 5, 7, 1 aper is used to test for the presence of [NCERT 1979] ne (b) Oxidising agent de ion (d) Reducing agent uny moles of $K_2Cr_2O_7$ can be reduced by 1 Sn^{2+} [MP PMT 2003] (b) 1/6 (d) 1 $5H_2O_2 + 6H^+ \rightarrow 2Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} O_2 (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (c) Sn redox reaction
aper is used to test for the presence of [NCERT 1979] ne (b) Oxidising agent de ion (d) Reducing agent my moles of $K_2Cr_2O_7$ can be reduced by 1 Sn^{2+} [MP PMT 2003] (b) $1/6$ (d) 1 $-5H_2O_2 + 6H^+ \rightarrow 2Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} O_2 (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (d) Sn redox reaction
[NCERT 1979] ne (b) Oxidising agent de ion (d) Reducing agent any moles of $K_2Cr_2O_7$ can be reduced by 1 Sn^{2+} [MP PMT 2003] (b) $1/6$ (d) 1 $-5H_2O_2 + 6H^+ \rightarrow 2Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} O_2 (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (d) Sn redox reaction
The (b) Oxidising agent (c) Reducing agent (c) Reducing agent (c) Reducing agent (c) Reducing agent (c) Reducing agent (c) RPMT 2003] (c) 1/6 (c) 1 (c) 1/6 (c) 1 (c) 1 (c) 1/6 (c) 1 (c) 1 (
de ion (d) Reducing agent my moles of $K_2Cr_2O_7$ can be reduced by 1 Sn^{2+} [MP PMT 2003] (b) 1/6 (d) 1 $-5H_2O_2 + 6H^+ \rightarrow 2 Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} (c) (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (d) Sn redox reaction
any moles of $K_2Cr_2O_7$ can be reduced by 1 Sn^{2+} [MP PMT 2003] (b) 1/6 (d) 1 $-5H_2O_2 + 6H^+ \rightarrow 2 Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} D_2 (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (d) Sn redox reaction
Sn^{2+} [MP PMT 2003] (b) 1/6 (d) 1 - 5H ₂ O ₂ + 6H ⁺ → 2Z + 5O ₂ + 8H ₂ O. In this Z is [RPMT 2002] (b) Mn ⁺⁴ (c) (d) Mn is 'A' in the following reaction + Sn ²⁺ (aq) → 2Fe ²⁺ (aq) + A [MP PET 2003] (aq) (b) Sn ⁴⁺ (aq) (aq) (d) Sn redox reaction
(b) $1/6$ (d) 1 $-5H_2O_2 + 6H^+ \rightarrow 2 Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} (c) (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (d) Sn redox reaction
(d) 1 $5H_2O_2 + 6H^+ \rightarrow 2 Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} (c) (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (d) Sn redox reaction
$5H_2O_2 + 6H^+ \rightarrow 2 Z + 5O_2 + 8H_2O$. In this Z is [RPMT 2002] (b) Mn^{+4} (c) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003] (aq) (b) $Sn^{4+}(aq)$ (aq) (d) Sn redox reaction
Z is[RPMT 2002]2(b) Mn^{+4} P_2 (d) Mn is 'A' in the following reaction $+ Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$ [MP PET 2003](aq)(b) $Sn^{4+}(aq)$ (aq)(d) Sn redox reaction
(b) Mn^{+4} (c) Mn^{+4} (c) Mn (c)
P_2 (d) Mn is 'A' in the following reaction $+ Sn^{2+}{}_{(aq)} \rightarrow 2Fe^{2+}{}_{(aq)} + A$ [MP PET 2003] (aq) (b) $Sn^{4+}{}_{(aq)}$ (aq) (d) Sn redox reaction
is 'A' in the following reaction + $Sn^{2+}{}_{(aq)} \rightarrow 2Fe^{2+}{}_{(aq)} + A$ [MP PET 2003] (aq) (b) $Sn^{4+}{}_{(aq)}$ (aq) (d) Sn redox reaction
is 'A' in the following reaction + $Sn^{2+}{}_{(aq)} \rightarrow 2Fe^{2+}{}_{(aq)} + A$ [MP PET 2003] (aq) (b) $Sn^{4+}{}_{(aq)}$ (aq) (d) Sn redox reaction
$+Sn^{2+}_{(aq)} \rightarrow 2Fe^{2+}_{(aq)} + A \qquad [MP \text{ PET 2003}]$ $(aq) \qquad (b) Sn^{4+}_{(aq)}$ $(aq) \qquad (d) Sn$ redox reaction
(aq) (b) $Sn^{4+}(aq)$ (aq) (d) Sn redox reaction
(aq) (d) Sn redox reaction
redox reaction
$C_2 O_4^{-2} + H^+ \rightarrow M n^{2+} + C O_2 + H_2 O_2$
rect coefficients of the reactants for the d reaction are[IIT 1988, 92; BHU 1995; CPMT 1 RPMT 1999; DCE 2000; MP PET 2003]
$C_4^- C_2 O_4^{2-} H^+$
5 16
5 2
16 2
16 5
f the following is a redox reaction
[AIEEE 2002]
$l + KNO_3 \rightarrow NaNO_3 + KCl$
$_{2}O_{4} + 2HCl \rightarrow CaCl_{2} + H_{2}C_{2}O_{4}$
(2) (2)
$2AgCN \rightarrow 2Ag + Zn(CN)_2$
of the following reaction is a redox
$[MP PMT 2003]$ $H_4P_2O_7$
$NO_3 + BaCl_2 \rightarrow 2AgCl + Ba(NO_3)_2$
$H_2 + H_2 SO_4 \rightarrow BaSO_4 + 2HCl$
$2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$

Get More Learning Materials Here : 💻

CLICK HERE

reduction

	[NCERT 1972; AFMC 200	0; Pb. CET 2004; CPMT 2004]		(a) Galvanization	(b) Cathodic p	protection
	(a) $NaBr + HCl \rightarrow NaCl +$	- HBr		(c) Electrolysis	(d) Photo-ele	ctrolysis
	(b) $HBr + AgNO_3 \rightarrow AgBr$	$+HNO_3$	6.	The metal used in galv	-	
	(c) $H_2 + Br_2 \rightarrow 2HBr$					ET 1985, 96]
	(d) $2NaOH + H_2SO_4 \rightarrow N$	$Ja_{2}SO_{4} + 2H_{2}O_{2}$		(a) <i>Pb</i> (c) <i>Al</i>	(b) Zn (d) Sn	
3.		g is the strongest oxidising	7.	In which of the follo change in valency		
	0	[Pb. CET 2000]		(a) $4KClO_3 \rightarrow 3KClO_4 +$	KCl	
	(a) $BrO_3^- / Br^{2+}, E^o = +1.5$	50		(b) $SO_2 + 2H_2S \rightarrow 2H_2C$	D+3S	
	(b) $Fe^{3+} / Fe^{2+}, E^o = +0.76$	6		(c) $BaO_2 + H_2SO_4 \rightarrow Ba$	$dSO_4 + H_2O_2$	
				(d) $2BaO + O_2 \rightarrow 2BaO_2$		
	(c) $MnO_4^- / Mn^{2+}, E^o = +1$.52	8.	The equivalent weight	of phosphoric a	cid (H_3PO_4)
	(d) $Cr_2O_7^{2-}/Cr^{3+}, E^o = +1$.33		in the reaction NaOH -	$+H_3PO_4 \rightarrow NaH_2PO_4$	$O_4 + H_2 O$ is
•	In the balanced chemical reaction,					AIIMS 1999]
	$IO_3^- + a \ \Gamma + b \ H^+ \rightarrow c \ H_2O + d \ I_2$			(a) 25	(b) 49	
	a, b, c and d respective	ely correspond to[AIIMS 2005]	9.	(c) 59 What is the equivale	(d) 98 nt mass of 10^{-1}	when it is
	(a) 5, 6, 3, 3	(b) 5, 3, 6, 3	9.	converted into I_2 in a		
	(c) 3, 5, 3, 6	(d) 5, 6, 5, 5		(a) $M/6$	(b) <i>M</i> /7	
•	The number of moles	of $KMnO_4$ reduced by one		(c) $M/5$	(d) $M/4$	
	mole of			(e) None of these	-	
	KI in alkaline medium	is: [CBSE PMT 2005]	10.	For decolourization	of 1 mole of H	MnO_4 , the
	(a) One fifth	(b) five		moles of H_2O_2 require	ed is [/	AIIMS 2004]
	(c) One	(d) Two		(a) 1/2	(b) 3/2	
	Auto oxidation and	Disproportionation		(c) 5/2	(d) 7/2	
			11.	In the reaction	2 2 9	4 0
	In the equation $H_2S + 2HNO_3 \rightarrow 2H_2O + 2NO_2 + S$			equivalent weight of i (a) 1/2 of molecular w	-	al to MP PET 2
	The equivalent weight	of hydrogen sulphide is[BVP 2	003]	(b) Molecular weight	018110	
	(a) 16	(b) 68		(c) 1/4 of molecular w	veight	
	(c) 34	(d) 17		(d) None		
	-	lace 1.12 litre hydrogen at	12.	The equivalent weigh	5	
	normal temperature and pressure ,equivalent weight of metal would be [DPMT 2001]			$2Cr(OH)_3 + 4OH + KIO_3$. –	
	(a) 24	(b) 12			_	P PMT 2004]
	(c) 1.2 ÷11.2	(d) 1.2 × 11.2		(a) Mole wt.	(b) $\frac{\text{Mol.wt.}}{6}$	
	Which one of the fol behind a metal on stron	lowing nitrates will leave ng heating [AIEEE 2003]		(c) $\frac{\text{Mol.wt.}}{2}$	(d) $\frac{\text{Mol.wt.}}{3}$	
	(a) Ferric nitrate	(b) Copper nitrate	13.	The product of oxida	ation of I^- with	$n MnO_{-}^{-}$ in
	(c) Manganese nitrate		،ر	alkaline medium is	[IIT-JEE Scre	
	To prevent rancidificat of the following is adde	ion of food material, which ed [CPMT 1996]		(a) IO_3^-	(b) <i>I</i> ₂	
	(a) Reducing agent	(b) Anti-oxidant		(c) <i>IO</i> ⁻	(d) IO_4^-	
	(c) Oxidising agent	(d) None of these	14.	In alkaline medium C	lO_2 oxidize H_2O_2	in O_2 and
•	Prevention of corrosion called	n of iron by zinc coating is		reduced itself in Cl^{-1} H_2O_2 will oxidize by o		
		[MD DMT 1002. CDMT 2002]				


Get More Learning Materials Here : 💻

[MP PMT 1993; CPMT 2002]

					edox Reactions 561	
	(a) 1.0	(b) 1.5		Codes :		
	(c) 2.5	(d) 3.5		(a) A B C D		
	(e) 5.0			2 3 4 1 (b) A B C D		
		tiaal Thinking		3 1 2 4		
		tical Thinking		(c) A B C D		
		Objective Questions		3 4 2 1		
		Objective Questions		(d) A B C D		
	In which of the	following acid, which acid has		2 3 1 4		
•		tion and complex formation	7.	M^{+3} ion loses $3e^-$.	Its oxidation number will be	
	properties	-			[CPMT 20	
	(a) 10/0	[UPSEAT 2001]		(a) 0	(b) + 3 (d) - 3	
	(a) HNO_3	(b) H_2SO_4	0	(c) + 6		
	(c) <i>HCl</i>	(d) <i>HNO</i> ₂	8.		$+2H^++2Cl^- \rightarrow Zn^{2+}+2Cl^-+D$	
•	-	which could not act both as as reducing agent is[IIT Screening :	1001]	the spectator ion is		
	(a) SO_2	(b) MnO_2	1991]	(a) <i>Cl</i> ⁻	(b) Zn^{2+}	
	(c) Al_2O_3	(d) <i>CrO</i>		(c) <i>H</i> ⁺	(d) All of these	
•		a reducing agent while SO_2 can	9.		ber of sulphur in $H_2S_2O_7$ a	
	-	reducing and oxidizing agent		iron in $K_4 Fe(CN)_6$ is		
	because	[AMU 1999]		(a) + 6 and + 2	(b) $+ 2$ and $+ 2$	
	(a) S in H_2S has -	2 oxidation state		(c) $+ 8$ and $+ 2$	(d) + 6 and + 4	
	(b) S in SO_2 has o	xidation state + 4	10.	Oxidation number oxide (KO_2) is	of oxygen in potassium su [UPSEAT 1999, 20	
	(c) Hydrogen in <i>H</i>	H_2S more +ve than oxygen		_		
	(d) Oxygen is mor	$e - ve in SO_2$		(a) – 2 (c) – 1/2	(b) $- 1$ (d) $- 1/4$	
•		common mineral acids, only	11.		loses 10 mol of electrons	
	sulphuric acid is found to be suitable for making the solution acidic because [Kurukshetra CEE 2002] (a) It does not react with <i>KMnO</i> ₄ or the reducing				pound Y. Assuming that	
				nitrogen appear in	the new compound, what is	
					V_2 in Y ? (There is no change	
	agent			the oxidation state		
	(b) Hydrochloric a	acid reacts with $KMnO_4$			[IIT 1981; Pb. PMT 19	
		an oxidising agent which reacts		(a) + 3	(b) - 3	
	with reducing	•	10	(c) -1	(d) + 5	
•	(d) All of the above $For H_{2}PO_{2}$ and H_{2}	$_{3}PO_{4}$ the correct choice is	12.	Amongst the following identify the species with an atom in + 6 oxidation state [IIT Screening 2000		
•	for <i>H</i> ₃ <i>i</i> O ₃ and <i>H</i> ₃	[IIT Screening 2003]		(a) MnO_4^-	(b) $Cr(CN)_6^{3-}$	
	(a) H_3PO_3 is diba				-	
		sic and non-reducing		(c) NiF_6^{2-}	(d) CrO_2Cl_2	
	(c) H_3PO_4 is triba	-	13.		following compounds, is f iodine is fractional[BVP 20	
		asic and non-reducing		(a) IF_3	(b) IF_2	
•		n List II and select the correct		2	_	
•		codes given below the lists		(c) I_3^-	(d) IF_7	
	List I (Compou	and) List II (Oxidation state of	14.	The compound	$YBa_2Cu_3O_7$ which sho	
T)					has copper in oxidation st	
	(A) <i>NO</i> ₂	(1) + 5		is in its usual +3 o	the rare earth element Yttri xidation state	
	(B) <i>HNO</i>	(2) - 3			[IIT 19	
	(D) NH_3 (D) N_2O_5	(3) + 4 (4) + 1		(a) 3/7	(b) 7/3	

Get More Learning Materials Here : 📕

- **15.** The oxidation number of sulphur in S_8, S_2F_2, H_2S respectively, are [IIT 1999] (a) 0, +1 and -2 (b) + 2, +1 and -2
 - (c) 0, +1 and +2 (d) -2, +1 and -2
- Which one of the following reactions is not an example of redox reaction [Kurukshetra CEE 1998]
 - (a) $Cl_2 + 2H_2O + SO_2 \rightarrow 4H^+ + SO^{4-} + 2Cl^-$
 - (b) $Cu^{++} + Zn \rightarrow Zn^{++} + Cu$
 - (c) $2H_2 + O_2 \rightarrow 2H_2O$
 - (d) $HCl + H_2O \rightarrow H_3O^- + Cl^-$
- **17.** For the reactions, $C + O_2 \rightarrow CO_2$; $\Delta H = -393 J$

 $2 Zn + O_2 \rightarrow 2 ZnO; \Delta H = -412 J$ [AIEEE 2002]

- (a) Carbon can oxidise Zn
- (b) Oxidation of carbon is not feasible
- (c) Oxidation of *Zn* is not feasible
- (d) *Zn* can oxidise carbon

18. In the reaction $B_2H_6 + 2KOH + 2X \rightarrow 2Y + 6H_2$, X and Y are respectively [EAMCET 2003] (a) H_2 , H_3BO_3 (b) HCl, KBO_3

(c) H_2O , KBO_3 (d) H_2O , KBO_2

19. In a balanced equation $H_2SO_4 + x HI \rightarrow H_2S + yI_2 + zH_2O$, the values of x, y, z are [EAMCET 2003] (a) x = 3, y = 5, z = 2(b) x = 4, y = 8, z = 5(c) x = 8, y = 4, z = 4(d) x = 5, y = 3, z = 4

20. Which of the following can act as an acid and as a base

[AMU 1999]

- (a) $HClO_3^-$ (b) $H_2PO_4^-$
- (c) HS^- (d) All of these
- **21.** MnO_4^{2-} (1 *mole*) in neutral aqueous medium is disproportionate to [AIIMS 2003]
 - (a) 2/3 mole of MnO_4^- and 1/3 mole of MnO_2^-
 - (b) 1/3 mole of MnO_4^- and 2/3 mole of MnO_2
 - (c) 1/3 mole of Mn_2O_7 and 1/3 mole of MnO_2
 - (d) 2/3 mole of Mn_2O_7 and 1/3 mole of MnO_2
- **22.** The conductivity of a saturated solution of *BaSO*₄ is $3.06 \times 10^{-6} ohm^{-1} cm^{-1}$ and its equivalent

conductance is $1.53 \text{ ohm}^{-1} \text{ cm}^{-1}$ equivalent $^{-1}$. The K_{sp} of the BaSO₄ will be [KCET 1996]

- (a) 4×10^{-12} (b) 2.5×10^{-9} (c) 2.5×10^{-13} (d) 4×10^{-6}
- 23. When MnO₂ is fused with KOH, a coloured compound is formed, the product and its colour is [IIT Screening 2003]
 - (a) $K_2 MnO_4$, purple green
 - (b) $KMnO_4$, purple
 - (c) Mn_2O_3 , brown
 - (d) Mn_3O_4 black

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.

1.	Assertion	:	SO_2 and Cl_2 both are bleaching
2.	Reason Assertion		agents. Both are reducing agents. [AIIMS 1995] Fluorine exists only in –1 oxidation state.
	Reason	:	Fluorine has $2s^2 2p^5$ configuration.
3.	Assertion	:	[AIIMS 2001] Stannous chloride is a powerful oxidising agent which oxidises mercuric chloride to mercury.
	Reason	:	Stannous chloride gives grey precipitate with mercuric chloride, but stannic chloride does not do so.[AIIMS 2
4.	Assertion $HClO_3$.	:	$HClO_4$ is a stronger acid than
	Reason	:	Oxidation state of Cl in $HClO_4$ is +VII and in $HClO_3$ +V. [AIIMS 2004]
5.	Assertion	:	In a reaction $Zn(s) + CuSO_4(aq) \rightarrow$ $ZnSO_4(aq) + Cu(s)$, Zn is a reductant
	Reason	:	but itself get oxidized. In a redox reaction, oxidant is reduced by accepting electrons and

Oxidation number and Oxidation state

		reductant is oxidized by losing
		electrons.
6.	Assertion :	Oxidation number of carbon in
		CH_2O is zero.
	Reason :	CH_2O formaldehyde, is a covalent
		compound.
7.	Assertion :	The oxidation numbers are
		artificial, they are useful as a 'book-
		keeping' device of electrons in
		reactions.
	Reason :	The oxidation numbers do not
		usually represent real charges on
		atoms, they are simply conventions
		that indicate what the maximum
		charge could possibly be on an atom
		in a molecule.
8.	Assertion :	H_2SO_4 cannot act as reducing
	agent.	
	Reason :	Sulphur cannot increase its
		oxidation number beyond + 6.
9.	Assertion :	Equivalent weight of NH_3 in the
		reaction $N_2 \rightarrow NH_3$ is 17/3 while
		that of N_2 is 28/6.
	Reason :	Equivalent weight
		Molecular weight
		number of e^{-1} lost or gained.

number of e lost of gamed

Answers

Oxidation, Reduction

1	b	2	b	3	c	4	c	5	с
6	a	7	b	8	b	9	a	10	С
11	b	12	а	13	b	14	b	15	b
16	а	17	а	18	b	19	С	20	b
21	a	22	с	23	b	24	b	25	b
26	С	27	С	28	d	29	а	30	a
31	a	32	а	33	a	34	d	35	b
36	d	37	d						

Oxidizing and Reducing agent

1	с	2	a	3	b	4	a	5	d
6	b	7	C	8	b	9	a	10	b
11	C	12	d	13	a	14	d	15	a
16	b	17	b	18	bd	19	b	20	d
21	а	22	b	23	d	24	d	25	b
26	d	27	d	28	C	29	а	30	d
31	d	32	C						

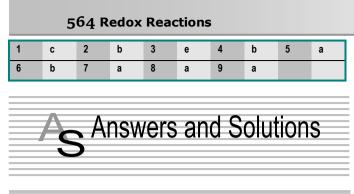
1	d	2	b	3	b	4	b	5	d
6	b	7	C	8	C	9	C	10	a
11	C	12	а	13	d	14	b	15	а
16	d	17	d	18	d	19	а	20	С
21	d	22	b	23	C	24	d	25	а
26	b	27	b	28	а	29	а	30	a
31	C	32	d	33	a	34	a	35	b
36	а	37	d	38	а	39	d	40	d
41	b	42	b	43	С	44	a	45	d
46	b	47	d	48	d	49	а	50	C
51	C	52	b	53	b	54	C	55	b
56	b	57	C	58	a	59	а	60	C
61	d	62	а	63	d	64	b	65	b
66	b	67	C	68	а	69	a	70	C
71	d	72	a	73	b	74	b	75	b
76	C	77	d	78	a	79	d	80	b
81	b	82	C	83	с	84	b	85	C
86	c	87	d	88	d	89	b	90	C
91	c	92	a	93	d	94	с	95	d
96	b	97	d	98	b	99	b	100	c
101	a	102	d	103	a	104	b	105	a
106	a	107	d	108	b	109	a	110	b
111	а	112	d	113	b				

Redox reaction and Method for balancing Redox reaction

1	а	2	b	3	C	4	C	5	а
6	а	7	а	8	b	9	а	10	d
11	d	12	C	13	C	14	а	15	d

Auto oxidation and Disproportionation

1	d	2	a	3	d	4	b	5	а
6	b	7	С	8	d	9	b	10	C
11	а	12	d	13	а	14	С		

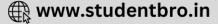

Critical Thinking Questions

1 6	d c	2 7	c c	3 8	a,b a	4 9	d a	5 10	a c		
11	a	12	d	13	c	14	b	15	a		
16	d	17	d	18	d	19	C	20	d		
21	а	22	d	23	а						

Assertion & Reason

Get More Learning Materials Here :

Oxidation, Reduction


- 1. (b) $2MnO_4^{\Theta} + 5H_2O_2 + 6H^+ \rightarrow Mn^{2+} + 5O_2 + 8H_2O$.
- **2.** (b) $S + 2e^- \rightarrow S^{2-}$
- 4. (c) $P_4^0 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3^{-3}$. Sodium hypophosph ite

It shows oxidation and reduction (Redox) properties.

- 6. (a) In this reaction H_2S is oxidised because the oxidation state of 'S' change from 2 to 0.
- 7. (b) $\stackrel{*4}{PbO_2} \rightarrow \stackrel{*2}{Pb}(NO_3)_2$. In this reaction reduction occurs.
- 8. (b) Any substance which is capable of oxidising other substances and is capable of accepting/gaining electron during oxidation is called oxidising agent or oxidant.

Get More Learning Materials Here :

- **9.** (a) $2CuI \rightarrow Cu + CuI_2$. Oxidation and Reduction both occur so the reaction is redox.
- **10.** (c) $H_2S + X_2(Cl, Br, I = X) \rightarrow 2HX + S$. Here the halogen are reduced.
- **11.** (b) When H_2O_2 reduces with $K_4[Fe(CN)_6]$. It is present in acidic solution.

 $2K_4[Fe(CN)_6 + H_2SO_4 + H_2O_2 \rightarrow$ $2K_3[Fe(CN)_6] + K_2SO_4 + 2H_2O_2$

- 13. (b) In the given reaction oxidation state of *Mg* is changing from 0 to +2 while in nitrogen it is changing from 0 to -3. So oxidation of *Mg* and reduction of nitrogen takes place.
- 14. (b) When sodium metal is dissolved in liquid ammonia to form coloured solution. Dilute solutions are bright blue in colour due to the presence of solvated electrons.

 $Na + (x + y)NH_3 \rightarrow [Na(NH_3)_x]^+ + [e(NH_3)_y]^-$ Blue Colour

15. (b) The metallic iron is oxidised to Fe^{+3} .

16. (a)
$$SnCl_2 + 2HgCl_2 \rightarrow SnCl_4 + Hg_2Cl_2(s)$$

Reductio

In this reaction H_gCl_2 is reduced in H_g .

- 17. (a) It is the process in which electrons are lost (de-electronation).
- **18.** (b) $4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$
- **19.** (c) Cu is above of Ag in electrochemical series and thus $Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$ reaction occurs.
- **21.** (a) $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$. In this reaction Sn^{2+} change in Sn^{4+} it is called an oxidation reaction.
- **22.** (c) $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2\Gamma$.
- **23.** (b) $Z_{n_{(aq)}}^{2+} + 2e^- \rightarrow Z_{n_{(s)}}^{0}$ reduction.
- **24.** (b) SO_2 bleaches by reduction while chlorine bleaches colour of flowers by oxidation.
- 25. (b) It is the process in which electrons are gained (electronation).

26. (c)
$$\begin{array}{c} \text{Oxidation} \\ \overline{a} & \overline{b} & \overline{b} \\ \overline{b} & \overline{b} & \overline{b}$$

In this reaction Zn atom oxidised to Zn^{2+} ion and iodine reduced to I^{-} .

27. (c)
$$CrO_4^{2-}$$

 $x + [(-2) \times 4] = -2$
 $x = 8 - 2 = +6$
 $x = \frac{12}{2} = +6$

In this reaction oxidation and reduction are not involved because there is no change in oxidation number.

- **28.** (d) $3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^{-1} + BrO_3^{-1} + 6HCO_3$. In this reaction bromine is oxidised as well as reduced.
- 29. (a) P is oxidized as well as reduced (as in option a).

- **30.** (a) $Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 3H_2O + 3I_2$
- **31.** (a) In this reaction oxidation occur.
- **32.** (a) Fluorine has highest E^{o} value and more reactive than MnO_2 .
- **33.** (a) $Fe^{2+} \to Fe^{3+} + e^{-}$ oxidation.
- **34.** (d) $MnO_4^- \rightarrow Mn^{2+}$. In this reaction $5e^-$ are needed for the reduction of Mn^{2+} as:

 $MnO_4^- + 5e^- \rightarrow Mn^{2+}$.

35. (b)
$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$

Reduction

In this reaction Cu^{2+} change in Cu^{o} , hence it is called as reduction reaction.

36. (d) $4Fe+3O_2 \rightarrow 4Fe+6O^{2-}$, in this reaction metallic iron is oxidised to Fe^{3+} .

37. (d)
$$2N_2^0 + O_2^0 \rightarrow 2NO^{+2-2}$$

Here O.N. of *N* increases from *O* in N_2 to +2 in *NO*, 2- and that of decreased from *O* in O_2 to -2 in *O*, therefore, it is a redox reaction.

🕀 www.studentbro.in

Oxidizing and Reducing agent

1. (c)
$$H_2^{-2} + H_2O_2 \to S^0 + 2H_2O_2$$

Oxidation

>>>

The oxidation of S shows oxidising nature of $H_2 O_2$.

2. (a) $C_2 O_4^{2-} + Mn O_4^- + H^+ \rightarrow Mn^{2+} + CO_2 + H_2 O$.

In this reaction $C_2 O_4^{2-}$ act as a reducing agent.

- (b) A substance which is capable of reducing other substances and is capable of donating electrons during reduction is called a reducing agent or reductant.
- 4. (a) Fluorine is a most powerful oxidizing agent because it consist of $E^o = +2.5 \text{ volt}$.
- 5. (d) *HClO* is the strongest oxidising agent. The correct order of oxidising power is $\frac{^{+1}}{HClO} > \frac{^{+3}}{HClO_3} > \frac{^{+5}}{HClO_4} > \frac{^{+7}}{HClO_4}.$
- 6. (b) It acts both oxidizing and reducing agent.
- 7. (c) Prevent action of water and salt.
- **9.** (a) In this reaction H_2O_2 acts as a oxidizing agent.
- (b) NaNO₂, SnCl₂ and HI have reducing and oxidizing properties but NaNO₃ have only oxidizing property.
- **11.** (c) Because I_2 is a reducing agent.
- **13.** (a) In this reaction H_2O acts as oxidising agent.
- 14. (d) I^- act as a more reducing agent than other ions.
- **15.** (a) When sulphur dioxide is react with H_2S here SO_2 act as an oxidising agent and H_2S act as reducing agent.
- **16.** (b) *HI* (Hydrogen Iodide) is a good reducing agent than other compound.
- 17. (b) Hydrogen sulphide (H_2S) acts as strong reducing agent as it decomposes by evolving hydrogen.
- **19.** (b) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$. In this reaction chlorine reduced from zero to 1 oxidation state.
- **20.** (d) $NaCl + H_2O \rightarrow NaOH + HCl$

Sodium ion hydrated in water.

- 21. (a) Potassium has higher negative value of reduction potential hence it shows more reducing properties.
- **22.** (b) The oxidation number of Ni changes from 0 to +1
- 23. (d) *HNO*₂ (Nitrous acid) acid acts as a oxidising, reducing agent and has complex formation properties.
- **24.** (d) CO_2 is an oxidizing agent.

25. (b) Hydrogen peroxide (H_2O_2) act as a both oxidising and reducing agent.

27. (d)
$$H_2O + Br_2 \longrightarrow HOBr + HBr_{-1}$$

In the above reaction the oxidation number of Br_2 increases from zero (in Br_2) to +1 (in HOBr) and decrease from zero (Br_2) to -1 (in HBr). Thus Br_2 is oxidised as well as reduced & hence it is a redox reaction.

28. (c)
$$Cl_2 + H_2O \longrightarrow HCl + HOCl$$

$$HOCl \longrightarrow HCl + [O]$$

HOCl can furnish, nascent oxygen.

29. (a)
$$Ag_2O + H_2O_2 \longrightarrow 2Ag + H_2O + O_2$$

Oxidation (reducing

30. (d) Oxidizing agent itself, undergoes reduction during a redox reaction

$$HAsO_2 + Sn \longrightarrow As + Sn + H_2O$$

Hence, here $HAsO_2$ is acting as oxidizing agent.

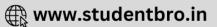
31. (d) $NaNO_2$ (Sodium nitrite) act both as oxidising as well as reducing agent because in it Natom is in +3 oxidation state (intermediate oxidation state) Oxidising property $2NaNO_2 + 2KI + 2H_2SO_4 \longrightarrow Na_2SO_4 + K_2SO_4$

$$+2NO+2H_2O+I_2$$

Reducing property

$$H_2O_2 + NaNO_2 \longrightarrow NaNO_3 + H_2O.$$
Reduction
$$32. (c) \qquad P + NaOH \longrightarrow PH_3 + NaH_2 PO_2$$
Oxidation

Oxidation number and Oxidation state


1. (d) *CO*₂

$$x + 2(-2) = 0$$
; $x - 4 = 0$; $x = +4$.

- **3.** (b) +2 it is a second group element.
- 4. (b) In HNO_2 oxidation number of N = +3

In HNO_3 oxidation number of N = +5.

- 5. (d) In case of Cl_2O chlorine shows + 1 oxidation state.
- 6. (b) $[Cr(H_2O)_4 Cl_2]^+$

x + 0 + 2(-1) = +1; x - 2 = +1x = +3 for *Cr* in complex.

- 7. (c) $Br_2 \rightarrow BrO_3^-$, in this reaction oxidation state change from 0 to + 5.
- 8. (c) Oxidation state of sulphur in H_2S is -2, while it is zero in 'S' i.e. in this reaction oxidation of sulphur and reduction of chlorine is takes place.
- **9.** (c) $K[Co(CO)_4]$

1 + x + 0 = 0; x = -1.

- 10. (a) $K_2Cr_2O_7 \rightarrow K_2CrO_4$. In this reaction no change in oxidation state of chromium.
- (c) In hypochlorous acid chlorine atom has + 1 oxidation number.

12. (a)
$$S \to S^{2-}$$
 O.N. of $S = -2$.

13. (d)
$$(NH_4)_2 SO_4 \approx 2NH_4^+ + SO_4^{--}$$

 \tilde{NH}_{4}^{+}

 $x + 4 = +1; \quad x = 1 - 4 = -3.$

- **14.** (b) In N_2O nitrogen have +1 oxidation state.
- **15.** (a) If any central metal atom combined with corbonyl group than central metal atom shows always zero oxidation state.
- **16.** (d) $H_2 \overset{*}{SO}_4$ 2+x-2×4=0, x=8-2=+6.
 - *
 - (d) $HClO_4$

17.

 $1 + x - 2 \times 4 = 0; 1 + x - 8 = 0$ x = 8 - 1 = +7 oxidation state.

- **18.** (d) $H \overset{*}{N} O_3$; 1 + x 6 = 0; x = +5.
- **19.** (a) Mn shows + 7 oxidation state in MnO_4^{-1}

 MnO_4^{-1} $x + (-2 \times 4) = -1$ x - 8 = -1 x = -1 + 8 = +7.

- **20.** (c) $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$
- **21.** (d) $K_2 MnO_4$

$$2 + x - 2 \times 4 = 0$$

$$x = 8 - 2 = +6$$

- **22.** (b) Each molecule always show zero oxidation state.
- **23.** (c) Maximum oxi. state for Cr is + 6.
- **24.** (d) In $[Fe(CO)_5]$, transition metal Fe has zero oxidation state.
- 25. (a) In (b, c, d) carbon show + 4 oxidation state while in (a) carbon show 4 oxidation state.

- 26. (b) $H_2C_2O_4$ 2+2x-2×4=0; 2x=8-2=6 $x = \frac{6}{2} = +3$.
- **27.** (b) In complex $[Pt(C_2H_4)Cl_3]^- Pt$ have + 2 oxidation state.
- **28.** (a) $CH_2 Cl_2$ x+2-2=0; x=0.
- **29.** (a) Phosphorus shows 3 to + 5 oxidation state.
- **31.** (c) The chemical structure of $H_2S_2O_8$ is as follows:-

So the oxidation number of S should be : $2 \times (+1) + 2 \times X + 6 \times (-2) + 2 \times (-1) = 0$ or X = +6. (for *H*) (for *S*) (for *O*) (for *O*-*O*)

32. (d) In hydrazoic acid (N_3H) nitrogen shows $-\frac{1}{3}$

oxidation state.

$$N_3H$$

 $3x + 1 = 0, \ 3x = -1, \ x = -\frac{1}{3}.$

- **33.** (a) Hydrogen have oxidation no. + 1 and 1.
- **34.** (a) $[Cr(NH_3)_4 Cl_2]^+$ $x + 4 \times (0) - 2 = 1 \implies x + 0 - 2 = 1$ $\implies x = 1 + 2 = + 3.$
- **35.** (b) $SO_2 = +4$

CLICK HERE

$$H_2SO_4 = +6$$

 $Na_2S_2O_3 = +2$
 $Na_2S_4O_6 = +\frac{5}{2}$

- **36.** (a) $\stackrel{*}{FeS}_{2}$ $\stackrel{*}{FeS}_{2}^{*}$ x - 4 = 0 4 + 2x = 0x = +4 2x = -4 $x = \frac{-4}{2} = -2$.
- **37.** (d) $NO_3^$ $x-2\times3=-1$; x=6-1=+5.
- **38.** (a) Every element always shows zero oxidation state.
- **39.** (d) In benzaldehyde all carbon atoms show 4 oxidation state.

🕀 www.studentbro.in

40. (d)
$$KIO_4$$

 $1+x-2\times 4=0$; $x=8-1=+7$.
41. (b) $N_2H_5^+$
 $2x+5=+1$; $2x=1-5$
 $2x=-4$; $x=-2$.
42. (b) Oxidation number of C in
 $HCHO = 0$
 $CHCl_3 = +2$
 $CH_3OH = -2$
 $C_{12}H_{22}O_{11} = 0$
43. (c) $KCIO_4$
 $2+2x-2\times 7 = 0$
 $2x-14+2=0$.
44. (a) $H_4IO_6^-$
 $4+x-12=-1$; $x=-1+8=+7$.
45. (d) Fluorine always shows - 1 oxidation state.

- **46.** (b) In oxidation process oxidation state always increases.
- **47.** (d) $HNO_3 = N_2O$ $1 + x - 6 = 0 \quad 2x - 1$

$$\begin{array}{rcl}
1+x-6=0 & 2x-2=0 \\
x=+5 & 2x=2 \\
& x=\frac{2}{2}=+1
\end{array}$$

- **48.** (d) All free metals always shows zero oxidation state.
- **49.** (a) $MnO_4^- \to Mn^{2+} + 5e^-$.
- **50.** (c) C has oxidation number = 0.
- **51.** (c) Iron has zero oxidation state in carbonyl complexes.
- **52.** (b) In all alkali and alkaline earth metal hydride hydrogen always shows 1 oxidation state.
- **53.** (b) Iodine shows 1 to + 7 oxidation state.

In this reaction chromium change from + 6 to +3 oxidation state.

- **55.** (b) In H_2O_2 oxygen shows = 1 (peroxide) oxidation state and in $BaSO_4$ oxygen shows = 2 oxidation state.
- **56.** (b) *Mn* shows highest oxidation state in $KMnO_4$.

57. (c) CH_2O

$$x+2-2=0$$

$$x=0$$
.

58. (a) In all peroxide oxygen shows - 1 oxidation state.

59. (a)
$$K_2 C r_2 O_7$$

 $2 + 2x - 2 \times 7 = 0$; $2x - 14 + 2 = 0$
 $2x = 12$; $x = \frac{12}{2} = +6$.

- **60.** (c) Nickle shows zero oxidation state in carbonyl complex.
- **61.** (d) $Os O_4$ x + 4(-2) = 0

 $\begin{aligned} x - 8 &= 0 \\ x &= +8 \end{aligned}$

- **62.** (a) *Al* shows + 3 oxidation state.
- 63. (d) $K_4[Fe(CN)_6]$ $1 \times 4 + x + (-1 \times 6) = 0, \ 4 + x - 6 = 0$ x = +2. In this complex compound Ire

In this complex compound Iron show + 2 oxidation state.

- **64.** (b) In this complex iron is a central metal atom showing + 2 oxidation state.
- **65.** (b) Oxygen shows + 2 oxidation state in F_2O . As F most electronegative element, it always has an O. No. =-1

66. (b)
$$H_3^* PO_3$$

 $3 + x - 2 \times 3 = 0$; $x = 6 - 3 = +3$.

67. (c)
$$Mg_2P_2O_7$$

 $4 + 2x - 2 \times 7 = 0$; $2x = 14 - 4 = 10$
 $2x = 10$; $x = \frac{10}{2} = +5$.

68. (a)
$$3 \times x + 1(1) = 0$$

 $3x + 1 = 0$
 $3x = -1, \Rightarrow x = -\frac{1}{3} \text{ in } N_3H$
 $x + 2(+1) + 1(-2) + 1(1) = 0$
 $x = -1 \text{ in } NH_2OH$
 $x \times 2 + 4(1) = 0$ $x = -\frac{4}{2} = -2 \text{ in } N_2H_4$
 $x + 3(1) = 0$ $x = -3$ in NH_3
Hence, highest in N_3H .

69. (a) In KH_2PO_2 $1+2+x+(-2\times 2)=0$ 3+x-4=0; x=+1.

>>>

CLICK HERE

70. (c) Oxygen has 6 electrons in the outer most shell and shows common oxidation state - 2.

🕀 www.studentbro.in

 $H_2 SO_4 = +6$; $H_2 S = -2$. (a) The oxidation number of sulphur in the 72. sulphur molecule (S_8) is 0 and 2. (b) In ferrous ammonium sulphate Fe shows +2 73. oxidation state. (b) $NH_2 OH$ 74. x + 2(+1) - 2 + 1 = 0x+2-2+1=0; x=-1. (b) $Ba(H_2PO_2)_2$; $BaH_4P_2O_4$ 75. 2+4+2x-8=0; 2x=2 $x = \frac{2}{2} = +1$. 77. (d) $H_2 SO_4$ $2 \times (+1) + x + 4 \times (-2) = 0$ +2+x-8=0; x=8-2=+6Electronic configuration of sulphur in H_2SO_4 is $1s^2$, $2s^2$, $2p^6$. 78. (a) $KMnO_4$ $1 + x - 2 \times 4 = 0$; x = 8 - 1 = +7. (d) H_3AsO_4 79. $+3+x-2\times 4=0$; x=8-3=+5. **80.** (b) The oxidation state of Xe in both XeO_3 and XeF_6 is + 6 XeO₃ XeF₆ x - 6 = 0 $x - 2 \times 3 = 0$ *x* = +6 x = +6. **81.** (b) $CH_3 - Cl$ $x + 3(+1) + (-1) \times 1 = 0$ x + 3 - 1 = 0; x + 2 = 0x = -2. 82. (c) $Cr_2O_7^{2-}$ $2x - 2 \times 7 = -2$; 2x = 14 - 2 = 12 $x = \frac{12}{2} = +6$. 83. (c) $H_2 SO_3$ $+2 + x - 2 \times 3 = 0$; x = 6 - 2 = +4. 84. (b) Two Cl atom shows +1 and -1 oxidation state. **85.** (c) *HClO*₃ $1 + x - 2 \times 3 = 0$; x = 6 - 1 = +5.

(d) $H_2SO_3 = +4$; $SO_2 = +4$

71.

86. (c)
$$5 |_{K_2SO_4}^{COOH} + 2KMnO_4 + 3H_2SO_4 \rightarrow COOH$$

 $K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O$

In this reaction oxidation state of Mn change from + 7 to + 2.

87. (d) Oxygen have + 2 oxidation state in OF_2 .

89. (b)
$$S_2O_3^{2-}$$

 $2x + 3(-2) = -2$; $x = +2$.
90. (c) $x + 2 \times (+1) + 2(-1) = 0$
 $x + 2 - 2 = 0$; $x = 0$ in CH_2Cl_2 .
91. (c) In potassium superoxide (KO_2) oxygen shows,

$$-\frac{1}{2}$$
 oxidation state

92. (a)
$$S_2Cl_2$$

 $2x + 2(-1) = 0$; $2x - 2 = 0$
 $x = +1$.

93. (d)
$$Na_2 S_4 O_6$$

 $2+4x-12=0$
 $4x=10 \ x=\frac{10}{4} \ x=\frac{5}{2}$

94. (c)
$$CuSO_4 + 2KI \Rightarrow K_2SO_4 + CuI_2$$

 $2CuI_2 \longrightarrow Cu_2I_2 + I_2$
95. (d) $NH_4Cl \Rightarrow NH_4^+ + Cl^-$

*

$$NH_4^+$$

 $r + 4 - +1$; $r - 1 - 4 - -3$

96. (b)
$$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$$
. In this reaction oxidation state changes.

97. (d)
$$Fe_3O_4$$

 $3x + (-8) = 0$; $3x - 8 = 0$
 $3x = 8$; $x = \frac{8}{3}$.
99. (b) $K_2 MnO_4$
 $2 + x - 8 = 0$
 $x = +6$
 $x = +2$.

100. (c) Chlorine have oxidation state – 1 to + 7.

101. (a)
$$[Co(NH_3)_4 ClNO_2]$$

 $x + 4(0) + 1(-1) + 1(-1) = 0$
 $x + 0 - 1 - 1 = 0$
 $x - 2 = 0$; $x = +2$.
102. (d) $K_4[Ni(CN)_4]$
 $4 \times (+1) + x + 4 \times (-1) = 0$

*

Get More Learning Materials Here : 🌉 🦳

 $+4 + x - 4 = 0 \Longrightarrow x = 0$.

103. (a) Fluorine always shows – 1 oxidation state in oxides.

104. (b)
$$K_3[Fe(CN)_6]$$

$$1 \times 3 + x + (-1 \times 6) = 0$$

$$3 + x - 6 = 0$$
; $x = +3$

105. (a) *NH*₃

x + 3(+1) = 0, x = -3.

106. (a) $_{26}Fe \longrightarrow [Ar] 3d^6 4S^2$

 $Fe^{++} \longrightarrow [Ar] 3d^6 4S^0$

$$Fe^{+++} \longrightarrow [Ar] 3d^5 4S^0$$

In +2 state Fe is called Ferrous & in +3 state as ferric.

- 107. (d) Fluorine is the most electronegative element in the periodic table so it never shows positive oxidation state.
- **108.** (b) Silicon forms silicides with strongly electropositive metals (like Na, Mg, K etc.) In these compounds. It has oxidation number = -4.

109. (a)
$$H_2S$$
 [O.N. of $H = +1$]

 $(+1) \times 2 + x = 0$

$$2 + x = 0$$
; $x = -2$

110. (b) Let the oxidation number of N in $NaNO_2$ be x

 $+1 + x + (-2) \times 2 = 0$ 1 + x - 4 = 0; r - x

$$+x-4=0; x=+3$$

- **111.** (a) x = 8 2 = +6
- **112.** (d) $K_2Cr_2O_7 + 6KI + 7H_2SO_4 \rightarrow 4K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 3I_2$

$$\overset{*}{C}r_2(SO_4)_3 \rightarrow 2\overset{+3}{Cr} + 3SO_2^{+3}$$

113. (b) Let the oxidation number of *I* in $IPO_4 = x$

Oxidation number of $PO_4 = -3$

 $x + (-3) = 0 \Longrightarrow x = +3$

Redox reaction and Method for balancing Redox reaction

1. (a) $MnO_4^- + 8H^+ + 5e^- \Rightarrow Mn^{++} + 4H_2O$.

2. (b) The balanced equation is $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$. Ratio of the coefficients of CO_2 and H_2O is 4 : 6 or 2 : 3.

3. (c) $Cr_2O_7^{2-} + 3e^- \rightarrow Cr^{3+}$.

In this reaction three electrons are required for the reduction of $Cr_2O_7^{2-}$ into Cr^{3+} .

- 4. (c) Number of e^- transferred in each case is 1, 3, 4, 5.
- 5. (a) Starch paper are used for iodine test

as:
$$\Gamma$$
 + oxidant $\longrightarrow I_2$

 $I_2 + \text{starch} \longrightarrow \text{blue colour}$

6. (a)
$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

$$(Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}) \times 3$$

$$Cr_2O_7^{2-} + 14H^+ + 3Sn^{2+} \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O_7^{2-}$$

It is clear from this equation that 3 moles of Sn^{2+} reduce one mole of $Cr_2O_7^{2-}$, hence 1 mol. of Sn^{2+} will reduce $\frac{1}{3}$ moles of $Cr_2O_7^{2-}$.

7. (a)
$$2MnO_4^{\Theta} + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$$
.
Reduction
8. (b) $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$
Oxidation

9. (a)
$$MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O \times 2$$

 $C_{2}O_{4}^{2-} \rightarrow 2CO_{2} + 2e^{-} \times 5$
 $\overline{2MnO_{4}^{-} + 5C_{2}O_{4}^{2-} + 16H^{+} \rightarrow 2Mn^{2+} + 10CO_{2} + 8H_{2}O}$

Thus the coefficient of MnO_4^- , $C_2O_4^{2-}$ and H^+ in the above balanced equation respectively are 2, 5, 16.

10. (d).
$$Z_{n+2AgCN}^{0} \rightarrow 2Ag + Z_{n}^{0}(CN)_{2}$$
.
Reductio

11. (d) $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$. This is a redox reaction.

12. (c)
$$H_2^{0} + Br_2 \rightarrow 2H - Br$$

Reductio

- 13. (c) Higher is the reduction potential stronger is the oxidising agent. Hence in the given options. MnO_4^- is strongest oxidising agent.
- 14. (a) $IO_3^- + aI^- + bH^+ \rightarrow cH_2O + dI_2$

Step 1 : $I^{-1} \rightarrow I_2$ (oxidation) $IO_3^- \rightarrow I_2$ (reduction) Step 2 : $2IO_3^- + 12H^+ \rightarrow I_2 + 6H_2O$ Step 3 : $2IO_3^- + 12H^+ + 10e \rightarrow I_2 + 6H_2O$ $2I^- \rightarrow I_2 + 2e$ Step 4 : $2IO_3^- + 12H^+ + 10e^- \rightarrow I_2 + 6H_2O$ $[2I^- \rightarrow I_2 + 2e]_5$ Step 5 : $2IO_3^- + 10I^- + 12H^+ \rightarrow 6I_2 + 6H_2O$ $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$ On comparing, a = 5, b = 6, c = 3, d = 3

15. (d) In alkaline medium

 $2KMnO_4 + KI + H_2O \rightarrow 2MnO_2 + 2KOH + KIO_3$.

Auto oxidation and Disproportionation

1. (d) $H_2S \rightarrow \overset{0}{S} + 2e$

Equivalent wt. = $\frac{M \text{ ol. wt.}}{2} = \frac{34}{2} = 17$.

2. (a) $1.12 \, ltr \, H_2 = 1.2 \, g; \therefore 22.4 \, ltr \, H_2 = 24 \, g$.

3. (d)
$$2AgNO_3 \xrightarrow{\Delta} 2Ag + 2NO_2 + O_2$$
.

- (b) To prevent rancidification of food material we add anti-oxidant which are called oxidation inhibitor.
- 6. (b) $Zn^{2+}/Zn.E^o = -0.76 V$

 Al^{3+}/Al $E^{o} = -1.662$ Sn^{2+}/Sn $E^{o} = -0.136$ Pb^{2+}/Pb $E^{o} = -0.126$

In galvanizing action Zn is coated over iron.

8. (d) Molecular weight of H_3PO_4 is 98 and change in

its valency = 1 equivalent wt. of H_3PO_4

$$= \frac{\text{Molecular weight}}{\text{Change in valency}} = \frac{98}{1} = 98 .$$

9. (b) Equivalent mass

 $= \frac{\text{Molecular weight}}{\text{Change in oxidation number per mole}}$

Suppose molecular weight is *M*

Oxidation number of I_2 in IO_4^- in Acidic medium i.e., $I \times (-8) + 1e^- = +7$

So eq. wt. = M/7 .

10. (c)
$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4$$

$$+3H_2O + 5O$$

$$5H_2O_2 + 5O \longrightarrow 5H_2O + 5O_2$$

$$2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \longrightarrow K_2SO_4 + 2MnSO_4$$

$$+8H_2O + 5O_2$$

- 11. (a) $\frac{\text{Molecular weight}}{2}$ = Equivalent weight of Iodine.
- **12.** (d) $\frac{\text{Molecular weight}}{3}$ Because in *KIO*₃ effective oxidation number is 3.

13. (a)
$$6MnO_4^- + I^- + 6OH^- \longrightarrow 6MnO_4^{2-} + IO_3^- + 3H_2O$$

$$14. (c) $ClO_2 \rightarrow Cl^-$$$

$$ClO_{2} + 2H_{2}O + 5e \rightarrow Cl^{-} + 4OH^{-}$$

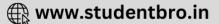
$$H_{2}O_{2} \rightarrow O_{2}$$

$$H_{2}O_{2} + 2OH^{-} \rightarrow O_{2} + 2H_{2}O + 2e$$

$$ClO_{2} + 2H_{2}O + 5e \rightarrow Cl^{-} + 4OH^{-}] \times 2$$

$$H_{2}O_{2} + 2OH^{-} \rightarrow O_{2} + 2H_{2}O + 2e] \times 2$$

$$2ClO_{2} + 5H_{2}O_{2} + 2OH^{-} \rightarrow 2Cl^{-} + 5O_{2} + 5H_{2}O$$


$$2ClO_{2} = 5H_{2}O_{2}$$

$$\therefore \qquad ClO_{2} = 2.5H_{2}O_{2}$$

Critical Thinking Questions

- (d) *HNO*₂ shows both oxidation and reduction properties.
- (c) Al₂O₃ could not act as a oxidising and reducing agent.
- 3. (a, b) In H_2S sulphur shows -2 oxidation state and in SO_2 shows +4 oxidation state. Hence SO_2 shows both oxidising and reducing properties.
- 4. (d) All the given statements are true.

- (a) H O P OH, hence it is dibasic. It acts as 5٠ reducing agent also.
- (c) (a) NO_2 ; x-4=0; x=+46.
 - (b) HNO; 1 + x 2 = 0; x = +1
 - (c) $\overset{\circ}{NH_3}$; x + 3 = 0; x = -3
 - (d) $\overset{*}{N_2O_5}$; 2x 10 = 0; 2x = 10; $x = \frac{10}{2}$; x = 5.
- (c) $2 \times \text{No. of } e^- \text{ losses} = \text{Oxi. no.}$ 7. $2 \times 3e^{-} = +6$.
 - (a) The ion which is not affected during the
- 8. course of reaction is known as spectator ion.

9. (a)
$$H_2S_2O_7$$

 $2 \times (+1) + 2 \times x + 7 \times (-2) = 0$
 $+2 + 2x - 14 = 0$
 $2x = 14 - 2 = 12$
 $x = \frac{12}{2} = +6$ for S
 $K_4Fe(CN)_6$
 $4 \times (+1)x + 6 \times (-1) = 0$
 $4 + x - 6 = 0$
 $x = 6 - 4 = +2$ for Fe.
10. (c) KO_2^{*} , $+1 + 2x = 0$, $x = -\frac{1}{2}$.
11. (a) $N_2^{2-} \rightarrow 2N^{a+} + 10e^{-1}$

 $\therefore 2a - [2 \times (-2)] = 10$

- $\therefore a = +3$.
- (d) CrO_2Cl_2 , x-4-2=0, x=+6. 12.

13. (c)
$$3x = -1, x = -1/3$$
.

14. (b) $Ba_2 Cu_3 O_7$

15

$$3 + 2 \times 2 + 3x - (2 \times 7) = 0$$

$$3 + 4 + 3x - 14 = 0$$

$$3x = 7$$

$$x = \frac{7}{3}.$$

(a) $S_8^* = 0$

 $\overset{*}{S}_{2}F_{2} = +1$

 $H_2 S = -2$.

- (d) In reaction $HCl + H_2O \rightarrow H_3O^- + Cl^-$, only 16. reduction has taken place not oxidation.
- (d) Zn can oxidise carbon because heat of 17. combusion of Zn < C.
- (d) $B_2H_6 + 2KOH + 2H_2O \rightarrow 2KBO_2 + 6H_2$. 18.
- (c) The values of x, y, z are 8, 4, 4 respectively 19. hence the reaction is

$$H_2SO_4 + 8HI \rightarrow H_2S + 4I_2 + 4H_2O$$

20. (d) Acid Base

$$HClO_3^ ClO_3^{2-}$$

 $HS^ S^{2-}$
 $H_2PO_1^ HPO_2^{2-}$

- **21.** (a) MnO_4^{2-} in neutral aqueous medium is
 - disproportionate to $\frac{2}{3}$ mole of MnO_4^- and $\frac{1}{3}$ mole of MnO_2 .


22. (d)
$$\lambda m = \frac{1000 \ K}{S} = \frac{1000 \times 3.06 \times 10^{-6}}{S} = 1.53$$

 $S = 2 \times 10^{-3} \frac{mol}{litre}$
 $K_{m(ReSO_{+})} = S^2 = (2 \times 10^{-3})^2 = 4 \times 10^{-6}$.

23. (a) $2MnO_2 + 4KOH + O_2 \xrightarrow{\Delta} 2K_2MnO_4 + 2H_2O$.

Assertion & Reason

- (c) It is true that SO_2 and Cl_2 both are bleaching 1. agents. But Cl₂ is an oxidising agent while SO_2 is a reducing agent. Therefore, in this questions assertion is true while reason is false.
- (b) It is correct that fluorine exists only in -1 2. oxidation state because it has $1s^2 2p^5$ electronic configuration and thus shows only -1 oxidation state in order to complete its octet. Hence, both assertion and reason are true and reason is not a correct explanation of assertion.
- (e) Here, assertion is false, because stannous 3. chloiride is a strong reducing agent not strong oxidising agent. Stannous chlorides gives Grey precipitate with mercuric chloride. Hence, reason is true.

CLICK HERE >>>

$$NH_3 = \frac{14+3}{3} = \frac{17}{3}$$
 (M. wt. of NH_3)
while for $N_2 = \frac{14 \times 2}{6} = \frac{28}{6}$

- (b) Both assertion and reason are true but reason 4. is not the correct explanation of assertion. Greater the number of negative atoms present in the oxy-acid make the acid stronger. In general, the strengths of acids that have general formula $(HO)_m ZO_n$ can be related to the value of n. As the value of n increases, acidic character also increases. The negative atoms draw electrons away from the Z-atom and make it more positive. The Z-atom, therefore, becomes more effective in with drawing electron density away from the oxygen atom that bonded to hydrogen. in turn, the electrons of H-O bond are drawn more strongly away from the *H*-atom. The net effect makes it easier from the proton release and increases the acid strength.
- **5.** (a) Both assertion and reason are true and reason is the correct explanation of assertion.

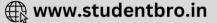
$$Zn(s) + C\mu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + C\mu(s)$$

Reduction gain of 2e

6. (b) Both assertion and reason are true but reason is not the correct explanation of assertion.

Oxidation number can be calculated using some rules. H is assigned +1 oxidation state and 0 has oxidation number -2

- \therefore O. No. of C in CH_2O :
- O. no. of C + 2(+1) + (-2) = 0
- \therefore O. No. of C = 0
- 7. (a) Both assertion and reason are true and reason is the correct explanation of assertion.
- **8.** (a) Both assertion and reason are true and reason is the correct explanation of assertion.


Maximum oxidation state of *S* is +6, it cannot exceed it. Therefore it can't be further oxidised as S^{-2} can't be reduced further.

9. (a) Both assertion and reason are true and reason is the correct explanation of assertion.

$$N_{2}^{0}+6e^{-}\longrightarrow 2N^{3-}$$

∴ equivalent weight of

Get More Learning Materials Here :

